
AIM: An XML-Based ECA Rule Language for
Supporting a Framework for Managing Complex

Information

Essam Mansour, Kudakwashe Dube and Bing Wu

School of Computing, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
<firstname>.<surname>@dit.ie

Abstract. This paper presents an XML-based event-condition-action (ECA)
rule language, AIM, for supporting the SEM framework and approach to the
computer-based incorporation of best practice in daily work and the subsequent
management of the resulting complex information. SEM framework provides
knowledge and information management support in terms of three planes: the
specification plane, the execution plane and the manipulation plane. AIM
language is an assembly of declarative language modules for supporting the
three planes of the SEM framework and envisages its use within the context of
XML and databases.

Keywords: ECA rule paradigm, XML language, active database, clinical
practice guidelines, information management

1 Introduction

The formalization and computerization of best practice and its subsequence
incorporation into an organisation’s computer-based information systems results in
complex information whose management poses a serious computing challenge. In
intensive care applications, a medical patient plan is an example for the complex
information that is produced by incorporating the healthcare best practice, clinical
guidelines, into the disease management. The domain users are interested in
incorporating the best practice and managing the complex information as one distinct
entity- as it exists in the domain- and at high and declarative level. However, most of
computerized approaches, which are utilized to incorporate best practice into
application activities, focus only on incorporating the best practice at the level of: 1)
individuals rules and triggers, such as in active database research [1, 2]; 2) processes
that create a list of administrative actions based on the user’s criteria, such as in
workflow based approaches [3]; 3) decision making by utilizing a decision model or
AI technique, such as in [4]. These approaches create gaps between the domain users
and the computerized best practice. For example, it is difficult for doctors to review or
modify the medical patient plan at the level of triggers or processes. Best practice
needs to be specified using a suitable language based on an appropriate computational
formalism. The language and computational formalisms used should be chosen

specifically for its ability to support easy incorporation of best practice with domain
information databases as well as its ability to support computer-based execution
mechanisms. The dynamic nature of best practice demands that specification
languages and execution mechanisms should allow on-the-fly manipulation.
Furthermore, the query and information retrieval facilities in information systems also
need to be provided with respect to the formalised best practice. This work follows a
generic, comprehensive and unified information management framework, called SEM
[5], developed by the authors in order to address these challenges. The unified
framework allows information to be managed comprehensively in three planes for the
specification, execution and manipulation with each plane being able to be integrated
with the other two planes.

This paper addresses the problem of providing a comprehensive language to
support the unified framework, SEM, for managing complex information arising from
the incorporation of best practice into computer-based applications. In this paper, a
high level XML-based declarative language, called AIM, for supporting the SEM
framework is presented. The rest of this paper is organised as follows: Section 2
outlines related work; Section 3 presents the AIM language requirements; Section 4
discusses the AIM language specification component, AIMSL; Section 5 presents the
complex information model in AIM; Section 6 presents the AIM language query and
manipulation component, AIMQL; Section 7 outlines the implementation progress
and future work; Section 8 summarises and concludes this paper.

2 Related Work

Languages that support the incorporation of best practice into computer information
systems has continued to attract a lot of research attention. The formalisation and
computerisation of best practice and expert knowledge in the area of database
administration has been achieved through using a XML-based rule language to
specify business policies that govern user database access rights [6]. Thus, using
computerised best practice and expertise, non-IT personnel could be allowed to
perform functions that are normally performed by a database administrator. Further
typical examples are found in the areas of business activity management (BAM) [7]
as well as in automated e-business negotiation with emphasis on goals, policies,
strategy and plans for decisions and actions [8] in which best practice is formalised
and specified for the purpose of computerisation.

ECA-RuleML [9] constitutes work on an XML-based rule language that focuses on
the logic programming framework for supporting specifications of event-condition-
action (ECA) rules that are integrated with derivation rules and integrity constraints.
In the area of active XML, the ECA rule paradigm [2] is incorporated into the XML
to support active behaviour over XML data. Several active XML languages have been
produced, such as Active XQuery [10], and An Event-Condition-Action language for
XML [11]. These languages incorporate the best practice into the application
activities at the level of separated rules and triggers, which makes difficulties to
domain users to review or modify. The AIM language is unique in its provision of a
unified framework that caters not only for creation of specifications but also for their

execution and subsequent manipulation and querying within a comprehensive
information management context.

3 AIM Language Requirements

The main requirements for AIM language is to support the SEM framework at the
three planes that cover information and knowledge specification, execution,
manipulation, querying and information scenario replays. These requirements are
summarised as follows: 1) Language requirements for the Specification Plane: AIM
language is required to support the specification process, in which the best practice is
formally specified ; 2) Language requirements for the Execution Plane: with respect
to a specific domain scenario, the best practice specification is customized and
instantiated to produce the complex information, such as producing a medical patient
plan for a specific patient using a specific clinical guidelines specification. The
complex information contains a reactive behaviour that determines the correct
reaction for certain situation, such as the medical patient plan gives medical
recommendations when the patient temperature is changed. Hence, the best practice
specification must be expressive enough to specify behaviour that can be executed
within this plane; 3) Language requirement for the Manipulation Plane: The complex
information is subject to the same manipulation operations, as the domain
information, plus some special operations, such as terminate, enable, and disable. The
manipulation operations could be included in the behaviour of the complex
information, or issued by the domain users. The manipulation operations facilitate a)
the propagation of the changes from the generic specification to the complex
information; and b) the maintenance of the complex information. The complex
information is also subject to the same queries, as the domain information, plus
special query support, such as the replay function, which allow dynamic execution
scenarios to be re-enacted for the user’s review.

Thus, to satisfy the requirements of the SEM framework, AIM language must
provide 1) a specification language, which we will call the AIM Specification
Language (AIMSL); 2) a model for the complex information; 3) a manipulation and
query language, which we will call the AIM Query Language (AIMQL).

4 AIMSL: The Specification Language for the Complex
Information

This section presents the specification component of AIM language, which called
AIMSL.

4.1 AIMSL Model and Distinguishing Features

The model of AIM Specification Language (AIMSL) follows the event-condition-
action (ECA) rule paradigm. AIMSL model expresses the best practice as
modularized sets of rules, which are classified according to functional objectives and

scopes. Fig. 1 illustrates the XML Schema of the AIMSL model. In this schema
model the best practice is formally specified as a protocol library, which consists of
protocol specifications as well as specifications of global rules whose scope is the
entire domain of discourse and one not associated with any protocol. As shown in Fig.
1, the individual protocols one made up of schedules and a set of protocols rules that
not associated with any schedule. Each schedule is a set of rules that differs from an
ordinary rule set in that it has an entry criteria and the fact that all rules in it are bound
together by a common functional objective. Each rule in the specification is deemed
to be an ECA rule, which is defined over some relevant domain information
attributes. It should also be noted that protocol, schedule and rule element in the
schema model has a set of attributes and that each element in the schema is made up
of a sequence of a combination of attributes and other elements. Thus, the schema
model allows ECA rules to be specified as either a memes of a set or a part of a
protocol or a schedule element. It should be pointed out here that the protocol and the
schedule are manageable as single units although they are effectively sets of rules.
The header is a collection of pieces of release and didactic information. The release
part provides information related to specific specification version. The didactic part
provides literature related to the best practice; cites references to the source of the
knowledge that is encapsulated in the AIMSL specification; and provides explanation.
 The AIMSL schema is modularized to provide flexibility in modifying or
enriching the AIMSL language to suit several application domains. For example,
applications, which demand specific requirements for the condition part, could
replace the condition part with its own one.

Protocol Library

Name Category
ID

SchedulesHeader Protocol Rules

Protocol

Name

Global Rules

Schedule
Rules

Header

Rule

Schedule

ID

ID

ID

Name Properties BodyHeader

Rule
Scope

Rule
Type

Priority Event Condition Action

absolute
Time

relative
Time

episode

ID

ON

Procedura
Action

AIMQL
Action

ID

DOdescriptiondescription operand1 operator operand2

Terms

term

ID

type title mapping
toDB

releasedInfo didacticInfo

institutionversion author specialist last
Modification

validation linksexplanationpurpose keywords citation

description

complex element

simple element

attribute

sequence

choice

reference

edge

Fig. 1. The XML Schema for the AIMSL sub-language.

4.2 ECA Rules and Temporal Features in AIMSL

 In AIMSL model, the rule schema consists of elements (name, properties, header,
and body) and the id attribute. The element properties determines the scope, type and

priority of the rule. The scope specifies
whether the rule is a global, protocol, or
schedule rule. The rules, according to their
event, are classified into to type static or
dynamic rules. A static rule performs an
action subject to the occurrence of a time
event. A dynamic rule is a rule, whose event is
a non-temporal event. The body consists of
elements (Terms, Event, Condition, and
Action). General terms are used in specifying
the rule event, condition, and action. The
element Terms specifies a general term and
maps it into particular data items according to
the utilized database schema. The term might
be of type event or element. Consider as
example, Rule 1: on two days after patient
admission, order the blood test. AIMSL rule
specification for Rule 1 will contains term,
whose title and type are patient admission and
event, respectively. The type event means this
term will be used in the specification of the
event of Rule 1. If the term is of type event, it
will be mapped into database operation(s). If
the term is of type element, it will be mapped
into database attribute.
 The event part of the AIMSL rules might be
of type episode; absolute time; or relative time. The type episode means a domain
event, such as “on patient admission”, or “on receiving ACR test result”. The event of
type absolute time or relative time is a temporal event. The relative time event is a
time event happening once or repeatedly and its time is related to a term of type event.
Consider as example for once off event, on day 2 of patient admission and 2 hours
before the completion time. Consider as example for repetitive event, every 3 days
after patient admission for 10 times, or every 10 hours before the operation time. The
relativeTime element has a complex type composed of a choice between two
elements, namely, onceOff and every. The absolute time is such as first of June 2008.

 -<protocol id="ProID-MAS">
 <name> microalbuminuria screening (MAS) protocol </name>
 <categoryID>CID316</categoryID>
 +<header>
 -<Schedules>
 -<schedule id="SIDMAS">
 <name>Basic MAS</name>
 +<header>
 -<scheduleRules>
 +<rule id="MAS1">
 -<rule id="MAS2">
 <name>Rule 2 of basic MAS</name>
 -<properties>
 <ruleScope>Schedule</ruleScope>
 <ruleType>Dynamic</ruleType>
 <priority>0</priority>
 </properties>
 + <header>
 - <body>
 -<Terms >
 <term id="E2.1">
 <type>event</type>
 <title>ACR test Result Received</ title >
 +<mappingToDB>
 </term>
 <term id="E2.2">
 <type>element</type>
 <title>ACR test result value</ title >
 +<mappingToDB>
 </term>
 </ Terms >
 - <event id="E1R2">
 <on>
 <relativeTime>
 <onceOff>
 <granularity>hours</exsd:granularity>
 <timeLength >2</exsd:amount>
 <of>
 <term id=" E2.1">ACR test Result Received</term>
 </of>
 </onceOff></relativeTime></on>
 </exsd:event>
 +<condition id="ID36">
 - <action id="AID36">
 - <do>
 -<AIMQLAction>
 - <add>
 +<rule id="MAS3">
 +<rule id="MAS4">
 </add>
 </AIM-QLAction>
 </do> </action></body></rule></scheduleRules></schedule>
 </Schedules></protocol>

Fig. 2. The MAS protocol specified
using AIMSL.

 The condition part is expressing a simple condition consisting of two operands and
an operator. The term of type element could be used as an operand to express a
condition, such as ACR test result is greater than 25. The action part might be a
procedural action, such as sending email, or an AIMQL action for manipulating or
querying the complex information. More complicated conditions and composite
events are considered as part of the future work.

4.3 Example

Fig. 2 illustrates an example for an AIMSL specification of a simplified version of the
microalbuminuria screening (MAS) protocol, which has a schedule containing two
rules, MAS1 and MAS 2, as shown below. MAS2 defines a set of clinical

recommendation that should happen two hours after the result of the required test in
MAS1 is received. As shown in Fig. 2, the action of the rule MAS2 adds two rules to
the specification, MAS3 and MAS4. The both rules are similar to the rule MAS1, but
they fire on day 6 and day 38 of the patient admission, respectively.

Rule MAS1: ON day 2 of the patient admission,
 DO order the test albumin creatine ratio (ACR).

Rule MAS2: ON 2 hours after receiving the result of test ACR
 IF the ACR result is greater than 25
 DO order ACR test twice on days
 number 6 and 38 of the patient admission

5 The Complex Information Model in AIM

This section outlines a model for the complex information (CI). The CI model is
presented in terms of the life-cycle, and structure.

5.1 Life-cycle of the Complex Information

During the life-cycle of CI, the CI goes through
state transitions, as shown in Fig. 3. These states are
predefined and context-sensitive. The context-
sensitive means that the CI’s state is affected by
changes in the domain information. When the CI is
generated, it should be authorized to be registered or
installed. In the registered state, all rules of the CI
are installed in the system. In this state, no rule has
fired yet. The CI moves to the “active” state once at
least one rule is fired. The state “active” includes
two sub-states, “waiting” and “executing”. In the
“waiting” state, at least one rule is fired and the
other rules are waiting for events that are of interest to the CI. In the “executing”
state, at least one rule is being executed. Once the rule execution completes, the CI
returns to the “waiting” state. The CI might be transited from “active” state to
“inactive”, “terminated”, or “completed” states. “inactive” state means that all the CI
rules become disabled. The CI might be transited from “inactive” to “active” state.
That means enabling the rules of the CI. “terminated” state means that all the CI rules
removed from the system, but are not removed from the CI itself. When all the
enabled rules in the CI are completed that means the CI is in the “completed” state.
The “completed” state of the CI could be determined by a domain user, who is in
charge of the CI. After the CI had become in the “completed” state, all the CI rules
are removed from the system. It could be decided to re-register the CI again, after it
had been terminated or completed.

generated

active

waiting

executing

registered

inactive

terminated

completed re-registered

Fig. 3. A state diagram for
e CI life-cycleth .

5.2 Complex Information Schema

The CI consists of two main parts an active part
and the passive part. The active part represents
the reactive behaviour derived from the AIMSL
specification. The passive part represents the
descriptive information, state of the CI and its
evolution since it has been created. The passive
part is subject to actions that log the execution
history of the CI. Therefore, CI grows over time.
CI is subject to dynamically changes in order to
suit the current conditions and constrains of
interest to the domain user. Fig. 4 illustrates the
XML Schema for the CI model in AIM. As
shown in Fig. 4, the active part of the CI is
represented as rules. Each rule is coded as a
trigger or several triggers. The trigger(s) are
used to register the rule in the system. The rest
of the XML Schema shows the passive part. The
passive part of the CI is modelled as time-
varying information. The model captures the valid times of the fact recorded under
the CI. That is leading to temporal relations among the CI and its components. On the
other hand, the passive part shows the components of the CI, the validity period of
their existence as a part of the CI, and their states. This model produces a temporal
XML document, such as the document depicted in Fig. 5.

C o m p le x In fo

S c h e d u le

s ta te S c h e d u le s

C IID P ro ID t it le
v a lid ity
P e r io d

P ro to c o l R u le s G lo b a l R u le s

v a lid ity
P e r io d v a lid ity

P e r io d
v a lid ity
P e r io d

ID R e f v a lid ity
P e r io d

R u le

ID R e f v a lid ity
P e r io d

tr ig g e rss ta te

s ta te

v a lid ity
P e r io d

v a lu e tr ig g e r

v a lid ity
P e r io d

s ta r tT im e e n d T im e

c o m p le x e le m e n t

s im p le e le m e n t

a ttr ib u te

s e q u e n c e

c h o ic e

re fe re n c e

e d g e

Fig. 4. The XML Schema for the
Complex Information Model.

5.3 Example

A medical patient plan could be generated based
on the specified protocol shown in Fig. 2. In the
generation process, the rule body (terms,
event, condition and action) is used to
generate a trigger, which could be encoded using
SQL, SQL/XML, or XQuery triggering language.
Choosing the triggering language depends on the
type of the database used to store the domain
information, whether it is a relational or XML
database.

Assume 1) the medial patient plan is
registered at time point 1; and 2) the result of
ACR test is received on day 3 and its value is
greater than 25. The action of MAS2 of the patient plan adds two new rules, MAS3
and MAS4, and then these changes are logged in the patient plan. Fig. 5 illustrates a
portion of the patient plan on day 4. This portion has the history of the patient plan
and its execution.

registered

ElementSchedule

Attribute

Text Node

MAS1 MAS2

1-2

MAS3 MAS4

state state state state

Value Value

executed registered

Value Value

executed registered registered

Value Value

1-2

1-3 3-3

1-3

2-2

3-Now 3-Now

3-Now 3-Now

1-2 1-3
3-Now 3-Now

edge
1-3 validity

Fig. 5. A part of the patient plan
on day number 4 of patient

admission.

6 AIMQL: A High Level Query and Manipulation Language for
the Complex Information

There is a need to move the complexity of manipulating and querying the best
practice specified using AIMSL and its corresponding complex information from
user/application code to a high level declarative language. AIMQL is a high level
XQuery-based language provides facilities to perform manipulation operation, and
advanced queries, such as replaying dynamic execution scenarios of the complex
information.

6.1 Requirements

The main functional requirements of AIMQL are to assist in: 1) Manipulating the
AIMSL specification and complex information (CI). The changes are made to AIMSL
specification might be required to be propagated to the corresponding CI; and 2)
Retrieving this information. This includes the ability to replay the CI or a specific part
of it within specific time period. There are general functional requirements that should
be also provided to AIMQL. These requirements are: 1) Declarativity, AIMQL should
be declarative. It should be independent of any particular platform or query evaluation
strategy. 2) Temporal Support, it should be able to record the history of executing the
CI reactive behaviour and to query it. 3) XQuery-based, the AIMSL specification and
CI are represented as XML document. Therefore, AIMQL should be based on
XQuery. 4) Convenient for humans to read and write, this could be achieved using an
XML-based graphical tool that assists in generating AIMQL query and browsing it.
XML is easy to be generated using tools and easy to be converted to human readable
format using a stylesheet language, such as XSL. Using XML in representing AIMQL
provides a compatibility with AIMSL, and assists in managing the complex
information remotely, using Web services.

6.2 Extensions to XQuery

Several extensions to XQuery are required in order to achieve the AIMQL
requirements as following: 1) Manipulation Operations: AIMQL introduces seven
manipulation operations (expressions). These expressions includes add, remove,
modify, activate, deactivate, terminate and Fire. The AIMQL manipulation operations
are distinguished in the sense that they not only potentially modify the AIMSL
specification or CI, but also propagate the modification to the corresponding CI
documents and modify the corresponding triggers created in the system. Furthermore,
the manipulation expressions log the changes occurring to CI documents; 2) Query
Support: AIMQL provides support to query AIMSL specification and CI document,
as the domain information, plus special query capabilities, replay function and
temporal query support for CI document, which is a temporal XML document.

AIMQL introduces a new functionality called
replay. AIMQL replay query is a query that plays
over again the history of the complex information
to show in details the actions that cause changes
on the complex information and how it evolved
over time. Fig. 6 illustrates examples for AIMQL
replay queries. These queries are presented here as
patterns for AIMQL replay queries over medial
patient plans, for short plans.

7 Implementation and Future Work

A combination of the ECA rule paradigm, XML,
and database systems has been adopted as
seamlessly integrated and easily incorporated
technologies in the implementation method for
AIM language. The poof-of-concepts implementation of the first vision of AIM
language is currently in progress. The AIM language is being implemented using
DB2, java, and XML technologies, such as XQuery and Web services. The DB2
XML database is used to store specifications based on AIMSL schema. Several
complex information documents could be generated from a specific AIMSL
specification based on AIM model for the complex information. The main phase in
generating a complex information document is the mapping of the rules into triggers.
The temporal events, which discussed in Section 4.2, are not supported by the
available DBMSs. We have extended the triggering mechanism of DBMSs to support
the temporal events. The instantiation and execution of specifications is based on SQL
trigger mechanism in DB2. However, our extension is a generic approach that could
be applied to other DBMSs. The mapping between AIMSL and the SQL trigger
language is being developed using Java, SQL in DB2.The AIMQL replay queries are
transformed into our temporal XQuery language that is under implementation.

Replay Pattern 1:
Retrieve the history of the schedule no S1 of the plan no X,
when the state of
the rule no R of schedule S2 was ST.
--AIMQL------------------------------------
REPLAY Complex Information CI
SHOW When, How, Why OF CI.schedule[@id = S1] CIS
Where CI[@CIID = X] and
CIS.overlaps
(valid(CI.schedule[@id=S2]\rule[@id=R]\state[value = ST]))
--Pattern Result----------------------------
This replay pattern returns the versions of Schedule no S1 of
the complex information no X, such that the validity of the
version overlaps the validity period of the state ST of rule R in
schedule S2.
--
Replay Pattern 2:
Replay the plans of category no CAT, which was working
through out the past Y
days.
--AIMQL------------------------------------
REPLAY Complex Information CI
SHOW When, How, Why OF CI
Where CI.cast(“day”) >= Y
and CI.meets(NOW)
and CI[@catID=CAT]
--Pattern Result----------------------------
This replay pattern returns the versions of the plans of category
CAT, whose validity period meets the current time, and whose
age is greater than or equal Y days.

Fig. 6. AIMQL replay patterns.

8 Summary and Conclusion

Most languages for the formalisation and specification of best practice are designed
outside the context of a comprehensive management framework, sometimes leading
to difficulties in managing the specified information or the integration of
specifications with domain information. This paper has presented a high level XML-
based declarative language, called AIM, for supporting the SEM framework. The
SEM framework manages best practice through three planes covering specification,
execution, manipulation and querying. AIM language aims at enabling the
specification, behaviour execution, manipulation and querying of the complex
information arising from handling computerised best practice. AIMSL, the
specification component of AIM language, uses the ECA rule paradigm to allow the
formalisation and specification of best practice to be incorporated into an event-driven

mechanism using XML. The AIM model for complex information has been discussed.
AIMQL is the manipulation and query component of AIM and is based on the
XQuery language with promises to extend it with temporal facilities. Work on
implementing the AIM language and evaluating it within the domain of clinical
guideline management is currently on-going.

References

1. Dayal Umeshwar, Barbara T. Blaustein, Alejandro P. Buchmann, et al., The
HiPAC Project: Combining Active Databases and Timing Constraints.
SIGMOD Record, 1988. 17: p. 51-70.

2. Jennifer Widom and Stefano Ceri, Active Database Systems: Triggers and Rules
For Advanced Database Processing. 1996: Morgan Kaufmann.

3. A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, et al., Developing scientific
workflows from heterogeneous services. SIGMOD Rec., 2006. 35(2): p. 22-
28.

4. M. Yusof Azwina, An on-line purchasing and decision support system for
distributed retail chain stores, in Proceedings of the 6th international
conference on Electronic commerce. 2004, ACM Press: Delft, The
Netherlands.

5. Bing Wu, Essam Mansour, and Kudakwashe Dube. Complex Information
Management Using a Framework Supported by ECA Rules in XML. in
submitted to: International RuleML Symposium on Rule Interchange and
Applications (RuleML 2007). 2007. Orlando, Florida.

6. Ajay Gupta, Manish Bhide, and Mukesh Mohania. Towards Bringing Database
Management Task in the Realm of IT non-Experts. in Proceedings of the
19th International Conference on Data Engineering (ICDE’03). 2003: IEEE
Computer Society.

7. Jun-Jang Jeng, Henry Chang, and Jen-Yao Chung. A Policy Framework for
Business Activity Management. in IEEE International Conference on E-
Commerce Technology (CEC'03). 2003.

8. Haifei Li, Stanley Y. W. Su, and Herman Lam, On Automated e-Business
Negotiations: Goal, Policy, Strategy, and Plans of Decision and Action.
Journal of Organizational Computing and Electronic Commerce, 2006.
16(1): p. 1-29.

9. A Paschke. ECA-RuleML/ECA-LP: A Homogeneous Event-Condition-Action
Logic Programming Language. in Int. Conf. of Rule Markup Languages
(RuleML'06). 2006. Athens, Georgia, USA.

10. Angela Bonifati, Daniele Braga, Alessandro Campi, et al. Active XQuery. in
Proceedings of the 19th International Conference on Data Engineering
ICDE. 2002. San Jose (California).

11. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An Event-Condition-
Action Language for XML. in The 12th International World Wide Web
Conference, www. 2002. Hawaii.

