A Query Language for Large String Processing

Majed Sahli

_ Saudi Aramco
majed.sahli@aramco.com

ABSTRACT

With the advent of large string datasets in several scientific
and business applications, there is a growing need to perform
ad-hoc analysis on strings. Currently, strings are stored,
managed, and queried using procedural codes. This limits
users to certain operations supported by existing procedu-
ral applications and requires manual query planning with
limited tuning opportunities. SQL can be used to analyze
strings; but it provides limited support for native string op-
erations because it is based on the relational model. It is
unnatural to represent and access strings using relational
algebra and tuple calculus.

This paper presents StarQL, a generic and declarative
query language for strings. StarQL is based on a native
string data model that allows StarQL to support a large va-
riety of string operations and provide semantic-based query
optimization. String analytic queries are too intricate to be
solved on one machine. Therefore, we propose a scalable and
efficient data structure that allows StarQL implementations
to handle large sets of strings and utilize large computing
infrastructures. Our evaluation shows that StarQL is able
to express workloads of application-specific tools, such as
BLAST and KAT in bioinformatics, and to mine Wikipedia
text for interesting patterns using declarative queries. Fur-
thermore, the StarQL query optimizer shows an order of
magnitude reduction in query execution time.

1. INTRODUCTION

Strings are sequences of symbols. Textual content on
the Internet and genomic sequences are examples of impor-
tant strings [20]. Textual content holds information critical
for corporations to understand consumer behaviour, bank-
ing firms to identify fraudulent activities, and governmental
agencies to find criminal groups. Generally, string analysis
involves a single long string (e.g., the human genome or the
Wikipedia text) or large collections of short strings (e.g.,
DNA reads or words in a Wikipedia article).

More strings are being produced due to technological ad-

Essam Mansour
Qatar Computing Research
Institute, HBKU
emansour@gqf.org.qa

Panos Kalnis
King Abdullah University of
Science & Technology
panos.kalnis@kaust.edu.sa

200 . . . : : :
180 d
s 160 .
F 40 .
Q 120 4 .
& 100 f ~ /
f=] 80 L
o
= 60} /'
R4} .
20 | o

0 —o—eo—o—o—o—

1980 1985 1990 1995 2000 2005 2010 2015
Year

Figure 1: An example of the explosion of sequential
data from bioinformatics as reported by NCBI!.

vances [22], stored due to low storage costs [6], and prop-
agated due to collaboration and information sharing [9].
According to the National Center for Biotechnology Infor-
mation ' (NCBI), the size of the genomic sequences stored
in the GenBank repository has doubled approximately every
18 months as shown in Figure 1. Ambitious projects that
require large string analysis include the Cancer Genome At-
las? and the Square Kilometre Array Telescope ®.

In string analysis, multiple operations are executed to ex-
tract information. One of the most basic string operations is
pattern matching. It is a core operation used in most string
algorithms. However, even this core and basic operation
can be simple, as in the case of exact matching; or more
involved, as in approximate matching. Counting pattern
matches leads to the problem of identifying frequent pat-
terns, which in turn leads to the motif extraction problem.
String operations have different semantics when dealing with
a single string as opposed to multiple strings. For instance,
matches within a single string provide insights different from
those of a single match in several strings.

One could map a string to a relation and its symbols to
attributes to analyze strings using SQL. However, strings
are usually large and vary in size, and the order of their
symbols matters. Alternatively, considering a whole string
as a single attribute is not a feasible solution because string
operations require primitives not served by SQL’s LIKE op-
erator, such as repeated patterns and common substrings.

'ftp: / /ftp.ncbi.nih.gov/genbank /gbrel .txt
http://cancergenome.nih.gov
Shttps:/ /www.skatelescope.org

Attempts to extend SQL with string operations do not pro-
vide native and generic string support because they are lim-
ited by their original data models [32, 15]. For example,
PiQL [31] and Sequence Datalog [21], attempted to support
string queries by extending the relational data model and
Datalog, respectively. These languages are constrained by
being application-specific and by providing very basic oper-
ations that make them impractical.

Hence, procedural codes are currently used to analyze
string datasets. For example, BLAST [1] is used for match-
ing, where it finds regions of local similarity between biolog-
ical sequences. Another example is KAT #, a k-mer counting
tool used to analyze substring frequency spectra. To analyze
strings, users manually move data and run different appli-
cations or use pipeline systems to automate this process ®.

This paper presents a declarative query language for strings,

called StarQL. StarQL provides native support for string
operations and generic primitives that cover users’ needs in
different applications. While StarQL is generic and works
for any string and application, most examples use DNA se-
quences for ease of exposition.

Example 1. Suppose we have a DNA sequence S and we
need to know if the pattern GGTGC is frequent in S or not.
Assume a pattern is frequent if it appears 5 times or more
in the string and that matches need not be exact as shown
in Figure 2.

SQL can be used to count matches of a candidate pattern but
matches are limited to the capabilities of the LIKE operator.
Using weighted scoring matrices in the case of DNA sequence
stmilarity is not an option. Using procedural code, we can
implement a string scanner and a distance function to find
and count matches. However, hard-coded queries contradict
with the essence of ad-hoc analysis.

In StarQL, finding out the number of matches for GGTGC in
S is achieved by the following query.

SELECT COUNT(MATCH(dna, "GGTGC", user_dist(2))); (1)

Finding out if a pattern is frequent or not is a simple
task. A more involved and realistic task is to extract all
frequent patterns in a string. Such patterns are referred to
as motifs and they require counting the matches for a large
number of candidate motifs. SQL cannot handle candidate
motifs generation so users need procedural code that imple-
ments Apriori-based or pattern-growth algorithms to extract
motifs. However, extracting motifs in StarQL is equivalent
to the following simple and customizable query.

SELECT RMOTIFS(dna, freq=100, \
minlen=3, maxlen=9, edit(2));

(2)

The StarQL language is based on our native string model,
called StarDM, that supports a large variety of string oper-
ations and is extensible to support application-specific op-
erators. To escape the procedural code trap, StarQL sup-
ports user-defined functions. For instance, matching is a
universal string operation but different applications use dif-
ferent matching criteria. In Example 1, user_dist is a
user-defined distance function used when matching DNA
sequences given a weighted scoring matrix. Moreover, the

“http://www.tgac.ac.uk/KAT/
Shttps://seqware.github.io/docs/6-pipeline/

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22
(Tlefc[T[e]e[T[c[e[T[c[c[e[e[T[c[A[T[c[c[T[c][C]
L ™ L 1

N I

Eal

Figure 2: Example string S over DNA alphabet 3 =
{A,C,G,T}. Matches for GGTGC are indicated, allowing
one mismatch and overlapping matches.

native string model allows StarQL queries to be smartly
rewritten based on their operation semantics to reduce exe-
cution time. The paper also proposes a scalable and efficient
data structure that is suitable for parallel query processing
and handling large sets of strings.

In summary, our contributions are the following.

e We introduce StarDM, a native string model that deals
with a string as a sequence of symbols, and the in-
put/output of any string operation as a set of strings.
Moreover, we classified string operations into categories
that support a wide range of applications.

e We develop StarQL, a declarative query language for
strings and provide a semantic-based optimization for
StarQL queries.

e We prupose StarIN, a scalable and efficient data structure

for realizing StarDM and implementing StarQL. StarIN
avoids the limitation of traditional string indexing tech-
niques by striking a balance between preprocessing
time, index size, and parallel support.

e We conduct comprehensive experiments on real datasets,
namely Wikipedia text and the Human genome DNA
sequence. We show how StarQL expresses a BLAST
workload and gets optimized to achieve significant re-
duction in execution time. StarIN allows our proof-
of-concept system to efficiently scale to thousands of
compute nodes on a supercomputer.

The rest of this paper is organized as follows. In the next
section, we introduce the StarDM data model. In Section
3, we introduce the syntax and semantics of StarQL, our
query language. Section 4 presents our StarIN data struc-
ture. We then evaluate our language in Section 5. Section 6
summarizes the related work before we conclude the paper
in Section 7.

2. NATIVE STRING SUPPORT

In this section, we introduce our StarDM string model,
in which a string is a sequence of symbols, and the in-
put/output of any string operation is a set of strings. Using
StarDM, we define operations that natively support string
queries based on the set theory. The StarDM closure prop-
erty along with relevant metadata allow for expressing and
solving complex string queries. This native support enriches
our query language with expressiveness and advanced query
optimization based on the semantics of the operations, as
we discuss in Section 3. Moreover, the simplicity of StarDM
allows for efficient and scalable implementations, as we high-
light in Section 4.

2.1 StarDM: A Native String Model

Evidently, string operations have one or more strings as
input and produce one or more strings as output. Therefore,

Collection String Occurrence
ID ID ID
Name 1:M |Length 1:M |Length
Size »| Alphabet | Position
Length Sequence Count
Origin

Figure 3: The metadata of StarDM collections.

a query language for strings will have to deal with collections
of strings. Theoretically, a set is an ideal representation
for a collection of strings because it allows (i) no strings
(the empty set), (ii) one string (a singleton), or (iii) many
different strings in a collection.

Our native string data model is called StarDM. In StarDM,
we consider strings as sequences of symbols, grouped into
collections. A string of zero symbols is an empty string, and
a collection of zero non-empty strings is an empty collec-
tion. Depending on how string collections are generated,
they could consist of several long strings or many short
strings.

In StarDM, a collection of strings has a certain alphabet.
Let 3 be an alphabet, a finite set of elements. The elements
of ¥ are called letters, characters, or symbols. A typical
example of alphabets is the English alphabet of 26 letters.
In biology, the DNA alphabet consists of the four characters
{A,C,G,T}. A string S over X is a finite concatenation
(ordered sequence) of symbols taken from 3. The length, or
size, of a string S = apa1 ...an—1, denoted by |S| is n, the
number of its elements from the alphabet with repetitions.
So, the length of S = ACAAT is 5. Extending these properties
to a collection of strings, size and length become distinct.
The size of a collection is the number of strings in it, and
its length is the summation of the lengths of the strings.
Similarly, the alphabet of a collection is the set union of the
alphabets of its strings.

The i-th element of a string S of length n is denoted by
S[i] and i is its position in S, where 0 < ¢ < n. We will
assume that S[n] contains the special end character $ ¢ X,
which cannot occur anywhere but in the end of a string. We
denote by S[i, j] a substring of S defined as follows.

S[i]S[i +1]...8[j] of length j —i+1 j >4
S[i] of length 1 j=1
$ of length zero ji<i

S[ivj] =

Given a string S and the three strings (possibly empty)
p, s, and t such that S = pst; p is a prefir of S, s is a
substring of S, and t is a suffiz of S. We say that the string
s of length m occurs in S at position 4, or that the position
¢ is a match for s in S, if s = S[i,i+m—1], or s is similar
to S[i,i+m—1] for some similarity measure and threshold.
Given a distance function, similarity between two strings
increases as the distance between them decreases.

StarDM maintains metadata about a collection of strings,
a string, and an occurrence of a specific string as shown
in Figure 3. This metadata assists in answering statistical
string queries, filter collections, ands optimize execution. In
contrast, PiQL [31] maintains metadata about the appli-
cation, for example, protein structure. StarDM maintains
several properties as follows. The ID is a unique identifier
of a collection, a string, or an occurrence. The NAME is a
textual description of a collection. The SIZE is the number

Table 1: Supported set operations; where A, B, and
C are collections of strings.

Operator Procedural form Algebraic
Intersection ~C = intersection(A, B) ANB
Union C = union(A, B) AUB
Difference C = difference(A, B) A\B

Table 2: Supported matching operations; where A,
B, and C are collections of strings; ¢ is a binary for
all or any and d is a distance metric threshold.

Operator Procedural form Algebraic
Exact C = exact(A, B, t) AEB
Approximate C = approx(A, B, t,d) A Aujgjany,a B
Regex C = regex(A, B, t) A Rapjjany B

of strings in a collection. The LENGTH is the total length
of all the strings in a collection or the length of a string.
The ALPHABET of a collection is the set of symbols used in
all its strings. For example, if a collection has two strings,
{aba, cba}, then the alphabet of the collection is ”abc”.
The ORIGIN of a collection is the path or query that resulted
in the creation of the collection. The transformations of
strings from one collection to another can be tracked using
this attribute. It is worth noting that some metadata is
stored (e.g., collection name) and some is computed (e.g.,
occurrence position).

2.2 String Operations

Our StarDM model supports and extends string algebra
operations suggested by different works [23, 5]. The fol-
lowing operations are chosen to support most string queries
required in different applications, such as matching and fre-
quent patterns. They are not too specific, as genomic assem-
bly, nor too generic, as simple concatenation. In StarDM,
we classify string operations into six categories, namely set
operations, matching, filtring, extraction, generation, and
aggregation.

2.2.1 Set operations

The set operations on string collections are identical to
their counterparts in the set theory (see Table 1). Given A
and B two collections of strings, the intersection operation
outputs the set of strings common to A and B. Similarly,
the union operation results in the set of strings in A or
B, whereas the difference operation filters B out of A. For
example, if A = {s1, $2,s3} and B = {s2, 3,54} then AN B
= {s2,s3}; AUB = {s1,s2,83,s4}; and A \ B = {s1}.

2.2.2 Matching operations

Matching is the basic textual problem and one of the most
used string operations. An exact matching operator may re-
turn a boolean value indicating the existence of a match or
it may return the number of matches, if any. A more in-
volved requirement is to return the positions of the matches
in the searched string. Variations of this operator include
approximate matching and evaluating regular expressions.

In Table 2, given A and B two collections of strings, the

Table 3: Supported filtering operations; where A,
B, and C are string collections; and d is a distance
metric threshold.

Operator Procedural form Algebraic
Prefix Filter C = is-prefix(A, B, d) AP;B
Suffix Filter C = is-suffix(A, B, d) AS;B
Substring Filter ~C = contains(A, B, d) ACyB

exact match operation outputs the set of substrings from A
that match a string in B. Similarly, the approximate match
operation finds matches of B in A given a distance metric
threshold. For most flexible matching, regular expressions
are used. In this case, B is a set of regular expressions
and the operation outputs the set of substrings from A that
match expressions in B. The all and any variants of the oper-
ators dectate the semantics over the two collections. In par-
ticular, an all-match requires matching against every string
in B, whereas an any-match requires at least one string in
B that matches. Specifically, matching over two collections
is logically an operation over the Cartesian product of these
collections. For example, if A = {TEST, BEST, ESTATE}
and B = {TT} then A E B = 0; A Apam) B = {TE, ST,
AT}; and A R {T*T} = {TEST, TAT}.

2.2.3 Filtering operations

Filtering a collection of strings can be thought of as a form
of set difference operation with a condition. In Table 3, given
A and B two collections of strings, we filter the left operand
according to conditions that involve the right operand. The
prefix and suffix filter operations output the set of strings
in A that have a prefix or a suffix from B within a distance.
The substring filter is more generic, where A is filtered by
matching strings from B regardless of position. Given two
string collections, filters are applied on the Cartesian prod-
uct of these collections. Moreover, collections can be filtered
according to metadata properties, such as length, size, and
alphabet. For example, if A = {TEST, BEST, ESTATE}
and B = {TT} then A Pham(l) B = {’I‘]’E‘/S’I‘}7 A Sham(l) B
= {TEST, BEST, ESTATE}; and A Cham() B = 0.

2.2.4 Extraction operations

Extraction operations allow for processing prefixes, suf-
fixes, or ranges within a collection of strings as shown in
Table 4. Given a collection of strings A, we allow extracting
prefixes with a range of lengths, between p; and p2. If a
string is shorter than pi, it is not considered a valid prefix
and thus eliminated altogether. Suffixes are handled in the
same manner without the need to know the length of strings
beforehand. The range extraction operation takes absolute
positions and extracts the substrings. If a string is shorter
than ps2, no substring would be extracted. The longest com-
mon substring operation (LCS) outputs a collection of a
single string, the longest common substring.

Figure 4 shows an example of extraction operations over a
sample collection. If we were to extract prefixes (or suffixes)
of length 5 from the example strings then there would be
only one. Moreover, the example has 2 unique suffixes of
length 1. The output collection maintains the unique strings
with counts of appearances. This will be detailed when the
data structures are discussed in Section 4.1. In this case,

Table 4: Supported extraction operations; where A
and C are collections of strings and p; < p2 are inte-
ger representing lengths for prefixes and suffixes or
positions for ranges.

Operator Procedural form Algebraic

Prefixes C = prefixes(A, p1, p2) H(START,[pl,pz]) A
Suffixes C = suffixes(A, p1, p2) H(END—[pl,pg],END) A
Range C = range(A, p1, p2) H(P1,P2) A

LCS C =1les(A) A A

Prefixes of length 1 ={T,B,E}
Suffixes of length 1 ={ T, E }

! Range from2to3 ={ES, ST}
STAT Longest Common Substring = { EST }

(a) Strings collection (b) Extraction operations results

Figure 4: Extraction operations example.

?T” will have a count of 2 because there were 2 “T” suffixes.
The range example has a similar case for “ES”.

2.2.5 Generation operations

Several string operations generate new strings [19, 26, 27].
In Table 5, we defined operators for motifs and k-mers, both
highly used when analyzing strings. The common motifs
problem is to find frequent patterns that appear in a num-
ber of strings. Given A a collection of strings, the common
motifs operation outputs the set of strings of length [1 to
l> that have matches in at least f strings from A. A sim-
ilar but more challenging problem is the repeated motifs
problem, where a pattern is frequent if it appears a certain
number of times in a single string. In this case, the output
is the union of repeated motifs in each string in A. The set
of k-mers contains the substrings of length k. Our k-mer
operation finds the set of strings of a certain length that
appear exactly in at least one string from A.

2.2.6 Aggregation operations

Aggregate operations are deterministic and result in a sin-
gle scalar value. It is important to know the size of a string
collection and the length of strings in a collection. In collec-
tions that result from other operations, each string will also
have a count of appearances in the collection. Table 6 shows
the aggregate string operations. The length of a collection
is the summation of the its member string lengths. The size
is the number of these nonempty strings. Operations such
as average, sum, maximum, and minimum can operate on
outputs of aggregate operations.

2.3 Extensibility

The list of operations discussed in Section 2.2 is not ex-
haustive. Given our unified model for strings, any opera-
tor that takes one or more collections as input and outputs
a collection is a valid operator. Our categories of string
operations can be extended with new operations that have
application-specific logic. For example, in bioinformatics,
genome assembly is an operation that takes a collection of
short reads and outputs a collection of a single long se-
quence. Assembly can be added to the existing string gen-

Table 5: Supported generation operations; where A
and C are string collections, I; <[, are lengths, f is
a frequency threshold, and d is a distance threshold.

Operator Procedural form Algebraic
Common Motifs C = cmotifs(A, I, l2, f, d) ®ll,l2,f,d A
Repeated Motifs C = rmotifs(A, 1, l2, f, d) ®11,l2,f,d A
K-mers C = kmers(A, I1) O A

Table 6: Supported aggregation operations; where
A is a collection of strings, A.a is a specific string in
A, and I is a numeric result.

Operator Procedural form Algebraic

Length I = length(A) 1TA
Size I = size(A) |A]
Count I = count(A.a) CA.a

eration operations. User-defined functions are incorporated
through dynamic loading (e.g., by linking a shared library).

Another way to extend StarDM functionality is to define
functions that are used within existing operators to embed
application logic. For example, Table 2 shows that match-
ing operations take as input a string distance function. This
function takes as input two strings and returns a scalar value
indicating the disimilarity between the input strings. Typ-
ical distance functions include the Hamming and Edit dis-
tance metrics. However, in bioinformatics, users may require
the use of application-specific metrics, such as weighted ma-
trices for DNA similarity scoring.

3. A DECLARATIVE QUERY LANGUAGE

This section introduces StarQL, a declarative query lan-
guage for strings. StarQL is based on our StarDM model. In
StarQL, queries are categorized according to their applica-
bility and results to administrative and analytic queries. Ad-
ministrative queries are used to manage the string database
and its string collections. Analytic queries are used to ex-
tract information. StarQL provides novel query optimiza-
tion techniques based on the semantics and categories of
the query operations. StarQL adopts a declarative SQL-like
syntax, which is easy to understand. Figure 5 shows an
abstract BNF of some of the StarQL constructs. Complex
string analysis can be performed by easily nesting differ-
ent constructs to form queries. Next, we discuss StarQL
constructs, grouped according to functionality, and give ex-
amples of their usage.

3.1 Query Constructs

3.1.1 Administration

The IMPORT utility provides a simple way for users to load
and index strings. Strings can be imported from the file
system or from query results. The input parameters of an
import command are: the path of the strings or the query
that generates them, and the name of the new collection that
will be created. The original path is not required for further
operations on the imported strings but a pointer to the orig-
inal path is kept for reference. The newly created collection

<query> := <query> | <import> ; | <select> ; |

<delete> ; | <aggregate> ;
<identifier> := $PATH$ | ID
<delete> := DELETE <identifier>
<dist> := HAMMING(int) | EDIT(int) | USER(int)
<length> := MINLEN int MAXLEN int | LEN int
<motif-type> := RMOTIFS | CMOTIFS
<motif-ops> := FREQ int <length> <dist>
<slct-cls> 1= <identifier> | <generator> | <extractor>
<motifs> 1= <motif-type>(<slct-cls> <motif-ops>)
<kmers> := KMERS(<slct-cls> <length>)
<generator> := <motifs> | <kmers>
<type> := ALL | ANY
<matches> := EXACT(<slct-cls> <type> <slct-cls>) |

EXACT(<slct-cls> "$PATTERNS$") |
REGEX (<slct-cls> <type> <slct-cls>) |
REGEX (<slct-cls> "$PATTERNS$") |
APPROX (<slct-cls> <type> <slct-cls> <dist>) |
APPROX (<slct-cls> "$PATTERN$" <dist>)

<range> := RANGE(<slct-cls> FROM $posi$ TO $pos2$)
<prefixes> := PREFIXES(<slct-cls> <length>)
<suffixes> 1= SUFFIXES(<slct-cls> <length>)
<extractor> := <prefixes> | <suffixes> | <range> | <matches>
<prefix> := PREFIX(<slct-cls> <slct-cls> <dist>) |
PREFIX(<slct-cls> "$PATTERN$" <dist>) |
<suffix> := SUFFIX(<slct-cls> <slct-cls> <dist>) |
SUFFIX(<slct-cls> "$PATTERN$" <dist>) |
<substring> := SUBSTR(<slct-cls> <slct-cls> <dist>) |
SUBSTR(<slct-cls> "$PATTERN$" <dist>) |
<filter> 1= <prefix> | <suffix> | <substring> |
<matches> | <metadata>
<sort> := ORDER BY <metadata>
<whr-cls> 1= <whr-cls> | <filter> | LIMIT int | <sort>
<select> := SELECT <slct-cls> [AS <identifier>]
[WHERE <whr-cls>]
<import> := IMPORT <identifier> AS <identifier> |

IMPORT <select> AS <identifier>

Figure 5: Abstract BNF for StarQL.

is named and given a unique ID. The number of strings and
the total length of all the strings are saved as collection prop-
erties. The IMPORT construct also allows for duplicating an
existing collection. The DELETE utility removes a previously
existing collection from the database system. Any indexes
and metadata can be purged but the origin of a deleted
collection (path or another collection) is not affected. For
example, a user imports a dataset of human DNA shotgun
reads from disk by running the following query.

IMPORT "/datasets/shotgun/human" AS hdna; (3)

3.1.2 Matching

The EXACT matching command finds exact matches of a
query pattern in a collection. The output of an exact match
operation is either a collection of one string, the matched
pattern along with the number of exact matches, or an
empty collection if no matches are found.

The APPROXIMATE matching command finds matches within
a certain distance threshold from the query pattern. The
distance function can be hamming distance or edit distance,
for example. The search process is similar to that of exact

matching except that we allow differences between matches
and patterns within a user-defined threshold. The result is
a collection of as many unique substrings that match with
their respective counts in the original collection.

The REGEX matching command finds substrings that match
a regular expression pattern. The capabilities of a regular
expression matching command are vital for several string
applications. Regular expressions can be evaluated using
deterministic finite automaton (DFA) over the strings. The
result is a collection of as many unique substrings that match
with their respective counts in the original collection. For
example, assume a user needs to find matches of the regex
expression ”AC..CA” in the previously imported collection
hdna. The query to find and save the results is written as
follows. Notice that a collection of one element can be sup-
plied inline for convenience.

IMPORT (SELECT REGEX(hdna, "AC..CA")) AS re; (4)

3.1.3 Extraction

The PREFIXES extraction command extracts all the unique
prefixes in a collection of strings. The input is a collection
along with the desired prefix length range. The output is a
collection of all unique prefixes within required length range.
The SUFFIXES extraction command is similar to PREFIXES
but for suffixes. The RANGE extraction command extracts all
the unique substrings that exist at a specific position in a
collection of strings. The input is a collection along with the
desired start and end positions. The output is a collection
of all unique substrings that exist at the specified positions
in all the strings.

In our running example, a user may be interested in the
different substrings of length 2 that exist between a pair of
”AC”. In this case, a range extraction query could be used
as follows. If re consisted of {ACCCAC, ACGTAC, ACTTAC,
ACATAC}, then the output would be {CC, GT, TT, AT}.

SELECT RANGE(re, FROM 2 TO 3); (5)

3.1.4 Generation

The following commands generate new strings from exist-
ing collections. The RMOTIFS command finds all the repeated
motifs supported by at least one string in the collection oper-
ated on. The input is a collection along with the desired mo-
tif properties; namely, minimum length, maximum length,
and frequency threshold. The CMOTIFS command finds all
the common motifs supported by a user specified number
of strings in a certain collection. The input is a collection
along with the desired motif properties. In addition, motifs
can be exact or approximate.

The K-MERS generation command finds all the unique k-
mers in a collection of strings. The input is a collection
along with the desired substring length k. The output is a
collection of the unique k-mers from all the strings in the col-
lection. For example, the k-mers of length 3 from the previ-
ously saved collection re are { AAC, CCC, CCA, CAC, ACG, CGT,
TAC,ACT, CTT, TTA, ACA, CAT, ATA}. To generate these k-
mers, the following query is used.

SELECT KMERS(er, LEN=3); (6)

3.1.5 Filtering

Existing collections can be filtered according to matches

or metadata properties. The PREFIX filtering command finds
the strings that share a certain prefix; either exactly or ap-
proximately. The input is a collection of strings, a prefix
pattern, and a distance function and threshold. The out-
put is a collection of strings with matching prefixes. The
SUFFIX filtering command finds the strings that share a cer-
tain suffix; either exactly or approximately. The input is a
collection of strings, a suffix pattern, and a distance func-
tion and threshold. The output is a collection of strings
with matching suffixes. The SUBSTRING filtering command
finds the strings that share a certain substring; either ex-
actly or approximately. The input is a collection of strings,
a substring pattern, and a distance function and thresh-
old. The output is a collection of strings with matching
substrings. The LENGTH filtering command finds strings of
a certain length range. The input is a collection of strings
and a length range. The output is a collection of strings of
the specified range.

Continuing our running example, assume the user is in-
terested in the k-mers of length 3 that include the 2 char-
acters between the pair of "AC” in the regular expression
matches, r = {CC, GT, TT, AT}. This is accomplished us-
ing the following query. The resulting filtered k-mers are
{CCC, CCA, CGT, GTA, CTT, TTA, CAT, ATA}.

SELECT KMERS(er, LEN=3) AS k \ (7)
WHERE SUBSTRING(k, r);

3.2 User-Defined Functions

StarQL supports user-defined functions, which can be used
to add new operations or introduce application-specific logic
using routines executed by other functions. For example,
one of the main routines used in string operations is the
distance function. However, it is difficult to include every
possible distance function. Therefore, user-defined functions
are used to augment StarQL distance functions and support
new metrics.

In bioinformatics, weighted matrices are used to measure
the similarity of DNA sequences. The weights are based on
a particular theory of evolution, where certain symbols are
more likely to mutate into other symbols. Conventionally,
rows and columns in a weighted matrix are associated with
alphabet symbols. For instance, using the example matrix
below, the distance between AACT and GAAT is 2+0+1+0 = 3,
whereas using Hamming distance it is 2.

S

Il
H Q Q =
= N = O
N WO =Q
w O W N
o W N =HA

3.3 String Query Optimizations

It is not always straightforward to optimize string queries.
This is because the order of executing string operations
could change the final results. Because StarQL is based on
StarDM, we can optimize string queries not only based on
the cost of each string operation but also based on the se-
mantics of these operations. To start, we find an execution
order that preserves the query logic while generating less
intermediate data. For example, if a query involves multi-

Table 7: An example for a schema-based optimization in StarQL. This query checks if the string ”australia”

is a repeated pattern in the Wikipedia collection.

SELECT RMOTIFS(wiki, freq=500, len=9, HAMMING(1)) as m WHERE EXACT(m, "australia");

PLAN A (naive)

PLAN B (optimized)

OUTPUT(Y)

@ Y = EXACT(X, “australia”)

X = RMOTIFS(wiki, freq=500, len=9, \
HAMMING(1))

OUTPUT(2)

@ Z=Y>=500

Aggregate) Y = COUNT(X)

@ X = APPROXIMATE(wiki, “australia”, \
HAMMING(1))

ple matching operations, one of which is against the longest
common substring, then finding the longest common sub-
string first reduces intermediate results and the search space
for subsequent matching operations.

To ensure correctness, we use the syntax of StarQL to
determine the semantics. In particular, the final output is
always a subset of the operation after a SELECT keyword.
Conditions after a WHERE keyword are interpreted from left
to right, but not necessarily executed in this order. Us-
ing this convention, how StarQL interprets queries is clear
to users. Only valid plans are compared internally to op-
timize efficiency. For instance, the following nested query
extracts suffixes of length 3 from the repeated motifs found
in Wikipedia.

SELECT SUFFIXES(RMOTIFS(wiki, \ (8)

MAXLEN=20, FREQ=1000), LEN=3);

StarQL’s query plans are based on the categories of StarQL
operations, where execution plans start with operations that
generate or extract strings, then apply operations that fil-
ter, limit or sort these strings. Furthermore, StarQL en-
ables semantic-based optimizations, where query operations
can be rewritten using other operations. While maintaining
query logic, semantic-based optimizations aim at reducing
computational complexity, intermediate results, and execu-
tion time.

Algorithm 1 describes the StarQL query optimizer. First,
a query is tokenized and tokens are assigned to categories.
Then, operations that can be reordered to minimize inter-
mediate results without affecting semantics are shuffled. For
instance, we do not push filter operations into generate op-
erations to keep semantics intact. Finally, StarQL re-writes
query operations based on their semantics. This is possible
because some StarQL operations can be expressed in terms
of other operations. For instance, approximate matches are
used to find motifs. The optimizer takes advantage of such
cases to find an equivalent set of operations with less cost
given the data and the user parameters.

Consider for example, a user query that checks if the string
”australia” is a repeated pattern in a Wikipedia collection.
A nalve plan starts by generating the repeated motifs. Then
the intermediate results will be filtered by the string ”aus-
tralia”. The StarQL optimizer will rewrite this query in
terms of counting approximate matches for the pattern we
filter at the end. Table 7 shows the two plans. Plan A uses
more resources and generates excessive intermediate results
whereas Plan B eliminates the expensive repeated motifs op-
erator and replaces it with a count of approximate matches.

Algorithm 1 STARQL QUERY OPTIMIZER ALGORITHM
1: procedure OPTIMIZE(QR)
2: T < tokenize(Q)
: T.initial = Q. first_token

3

4 while T.initial NOT collection_id do

5: T < tokenize(T.initial)

6: end while

T T.filters < Q.last_token

8 if T.filters in MATCH || EXTRACT then
9: push_down(T. filters)
10: end if

11: S <« detect_semantics(T)
12: P + S.optimal _plan

13: return P

14: end procedure

3.4 Scenarios and Workloads

Consider scenarios of users performing analytical tasks on
strings; such as finding frequent patterns, matching, count-
ing, and generating k-mers. Queries can be executed in dif-
ferent orders, nested, saved, and further processed. We next
describe two different scenarios and discuss their expected
workloads.

3.4.1 Literary scenario

Given the English text of Wikipedia, a librarian is curi-
ous about how writers start articles. She wants to explore
the letters that frequently appear consecutively in the pref-
aces of Wikipedia pages. In StarQL, the k-mers operation
finds symbols that appear consecutively and reports their
frequencies. To find k-mers from the beginnings of articles,
the k-mers are generated from the prefixes of the texts or
are checked to exist in a specific range. To explore, the
librarian may need to increase k-mers lengths as long as fre-
quency is high. Given StarQL indexing, these queries are of
low workloads. The following two StarQL queries find the
top 20 k-mers of length 4, 8, or 16, that appear in the first
100 characters more than 200 times across the dataset.

IMPORT SELECT PREFIXES(wiki, LEN=100) \
AS pref;

SELECT KMERS(pref, LEN=(4, 8, 16)) \ (9)
AS k WHERE COUNT(k) > 200 ORDER BY \
COUNT (k) DESC LIMIT 20;

The first query translates to creating a new collection in
the database from the results of the prefix extractor. The

second query is run by executing the k-mers operation 3
times, one time for each length, accumulating results after
filtering on the count while keeping the top 20 results only.

3.4.2 Bioinformatics scenario

Given DNA and protein datasets, a biologist needs to
find the patterns that are frequent within every genomic
sequence and at the same time common between different
sequences. Such patterns have potential functional impor-
tance and can be used to draw conclusions across species
or to find mutations within a species. The task translates
to generating repeated motifs, generating common motifs,
then finding the motifs that are both repeated and com-
mon. The workload of such task is high due to the combina-
torial search space over the string’s alphabet. The following
StarQL query is an example for this scenario.

SELECT EXACT(CMOTIFS(dna, LEN=10, \
HAMMING(2), FREQ=10), RMOTIFS(dmna, \ (10)
LEN=10, EDIT(2), FREQ=10000));

Without semantic-based optimizations, the query plan pro-
ceeds as follows. First, the inner sub-queries are evaluated
and their results are saved as temporary collections. Then,
the exact matching operator is evaluated to find the inter-
section between the repeated and common motifs. However,
the StarQL optimizer uses the semantics of the operations to
reduce the complexity of the query. In this case, we first gen-
erate repeated (or common) motifs, then count the matches
to check if they are also common (or repeated).

4. A SCALABLE DATA STRUCTURE

This section introduces a scalable and efficient data structure

for implementing the StarDM model and StarQL operations.
Our data structure provides native string indexes inspired
by the generalized suffix trees (GST) [17]. GST is the de
facto index for a collection of strings and a powerful full-
text index that is essential for string operations against a
set of strings [17]. However, the GST index has several scal-
ability limitations in terms of number of strings and parallel
processing. This section highlights these limitations and in-
troduces our data structure, which finds a balance between
preprocessing time, index size, and parallel support. We
aim at enabling parallel support for StarQL implementa-
tions to utilize large infrastructures and support large sets
of strings. Moreover, the section discusses the implementa-
tion of StarQL operations based on our novel structures.

4.1 Limitations of Generalized Suffix Trees

A Generalized Suffix Tree (GST) is a suffix tree index of
all suffixes of a given set of strings [17]. Consider the set of
strings S = { TEST, BEST, ESTATE }. Figure 6 shows a
GST of S. In average, the number of nodes in a suffix tree is
2n, where n is the cumulative length of the indexed strings.
However, each node stores at least 3 integers to identify its
path label (the starting position, the label length, and a
string identifier). For example, the first child of the root in
Figure 6 indicates the starting position 4, the length 4, and
the string 3 in order to recover the path label ”ATE!”. A
hefty constant is hidden when describing the space require-
ment of a GST as linear. The size of a GST is orders of
magnitudes more than the total size of the indexed strings.
For large string processing, it is hard to deal with a huge
and indecomposable structure.

1 2 3 4 5
yit[els[r]s

1 2 3 4 5

2) [e[e[s[T]#

s/ AD . /
1 2 3 4 5 6 7 1 N

3) n Path label from

string k starting at

Figure 6: Generalized suffix tree example. The la-
bels are shown for simplicity but not stored in GST
implementations.

1 2 3 4
y[rlels|t]
1 2 3

4
2 BlelsT
Path label starting

with A appears i
times in all strings

1 2 3 4 5 6
3 [e[s[r[a]T]e]

Figure 7: Example proposed index as opposed to
Figure 6.

A GST is not scalable because it requires as many distinct
terminating symbols as the number of indexed strings. This
is infeasible considering the number of strings in a collec-
tion can be in the order of millions. Therefore, the alphabet
size will be huge. Alternatively, GST leaf nodes will have
to store a list of strings that share their path labels; adding
to the space requirement. Moreover, parallel search in a
GST requires extensive communication or excessive replica-
tion in the case of distributed processing. The generalized
suffix trees were originally invented to save time and provide
information on a set of small strings with minimal computa-
tion. However, at the targeted scale, random storage access
to retrieve path labels is an unacceptable 1/O burden and
node size explodes in order to store string identifiers.

4.2 StarIN: A Scalable Index for Strings

We argue that parallel computation should be used with
more basic data structures to support scalable and efficient
string operations. StarIN is a novel suffix trie index that
indexes all suffixes of all strings and retains the frequency of
every path label. Because we are targeting large collections
of strings; each node stores a single character, avoiding the
need to reference strings to retrieve path labels. The path
label frequency is used to answer and optimize many string
operations without the need to access strings. StarIN is
constructed in linear time by traversing the trie from the
root using the suffixes. When a suffix exists, node counts
are incremented. Otherwise, new nodes are created for the
newly added suffix and the counts are initialized to 1.

Although the space requirements of suffix trees and tries
are asymptotically the same, it is accepted that a suffix tree
is space-efficient because it is a compressed trie. Neverthe-
less, long common labels are less expected in large collections
of strings as the probability of having different combina-
tions from a fixed alphabet increases with string length and

position i and of length j

collection size. Consequently, the construction complexity
added for compacting path labels is unjustifiable given the
expected space saving. In cases where most suffix tree labels
are single characters, a trie is superior in both space require-
ment and access time. StarIN eliminates the need for dif-
ferent terminating symbols or maintaining string identifiers
and compacting path labels. Some information that would
have been readily available in a GST requires extra com-
putation in StarIN. However, such information is efficiently
generated when needed in a distributed fashion. Figure 7
shows an example StarIN index.

When exact positions or counts within each string are
required, we utilize well-known string algorithms to effi-
ciently extract this information in parallel. StarIN balances
between preprocessing time, index size, and execution effi-
ciency. For instance, Boyer-Moore search algorithm is run
in parallel to find original strings that satisfy a certain fil-
ter query after pruning the search space using the suffix
trie and an External R-Way merge sort algorithm is used to
eliminate duplicate results after a pattern extraction query
is executed.

We assume that collections imported by users consist of
long strings (e.g., genomic sequences) while collections that
result from user queries consist of relatively short strings
(e.g., matches and k-mers). This assumption allows us to
be space-efficient in the case of long strings, where strings
are stored and indexed separately using suffix trees [18]. We
still avoid a GST even for long strings because a huge single
tree is challenging to manage and traverse in parallel. Op-
erations over long strings avoid the search algorithms since
their performance degrades as strings get longer. At the
same time, multiple suffix trees fit the distributed nature of
large-scale string analytics, where work on a collection could
be partitioned among a number of workers. Because suffix
trees are well studied; we next focus on our computation
model.

Let us compare the use of the GST in Figure 6 and StarIN
in Figure 7. Finding the number of times "EST” appears
in S requires traversing the GST to the node whose path
label is "EST” then counting the leaf nodes below it, i.e.,
exhaustively traverse the sub-tree to find three leaf nodes
indicating the three appearances. During traversal, path
labels are recovered by accessing the original strings. In our
StarIN index, we traverse the suffix trie following nodes "E”,
?S”, then ”T” to find that "EST” appears three times. The
total count of appearances is available by construction in
our index.

Given the collection S from the previous example, let T be
another collection of one string, T = {WEST}. To execute
APPROX(S, T, EDIT(1)), the suffix trie of S is traversed to
match "WEST” allowing one edit. The output is the set of
matches {BEST, TEST, EST}. Now assume T = {TA}, to
filter strings in S with a suffix " TA” allowing one mismatch,
we execute SUFFIX(S, B, HAMMING(1)). The suffix trie for
S is traversed to level 2 keeping the path labels that are
within hamming distance 1 from "TA”. To ensure a path
label is a suffix, it must be a leaf or have its count is more
than the sum counts of its children. In this case, the output
is {ESTATE}.

4.3 Parallel Support for StarQL Operations

StarIN supports StarQL primitives, which include com-
plex operations that require parallelization in order to finish

in reasonable time. Tuning problem decomposition depends
on the number of available workers and the load of the query.
Given our StarIN data structure, a collection is decomposed
into sub-collections and assigned to workers. The StarIN
footprint of each sub-collection fits in memory. Complex
query operators are solved in parallel by utilizing the un-
derlying infrastructure and the decomposed data structure.
Next we show by example how we utilize parallel computa-
tion to extract information that is not stored in our StarIN
data structure.

Assume a user was interested in finding the positions where
"EST” appears in S. Using StarIN, we would know from
traversing the trie that ”EST” appears three times. To find
the exact positions, a parallel search is executed where the
strings in S are distributed among workers to search for the
three occurrences. This search is feasible because it is a
bounded exact search and the cost is distributed between
workers.

To extract the longest common substring in S, we run
LCS(8) which first extracts the longest substrings that ap-
pear at least |S| = 3 times then verify that they exist in
every string at least once. In the first step, the candidate
solutions are ordered according to their length, {EST, ST,
E, T}. In order to stop short, if possible, verification starts
from the longest candidate. An exact parallel search is used
to verify that "EST” appears in every string, which is the
case in this example and the result is {EST}. Finally, to gen-
erate 3-mers of S, KMERS(S, LEN=3), the suffix trie branches
of length three are simply spelled out {ATE, BES, TES,
TAT, EST, STA}.

Example 2. Consider a user needs to find text that ap-
pears frequently in Wikipedia. The user has to work around
spelling mistake and simple differences such as noun plurals
and verb tenses. First, the Wikipedia archive is imported
into the string database using the IMPORT StarQL construct.
The database indexes the dataset using StarIN and may par-
tition or replicate indexes depending on size and available
resources. To find all frequent patterns, a query to generate
motifs is used. Motifs are patterns that appear frequently
but not necessarily exactly. StarQL supports different dis-
tance functions for approximate matching. Running on 480
cores, the motifs search space (a combinatorial tree over the
English alphabet) is partitioned to thousands of tasks. The
workload is balanced by dynamically assigning tasks and the
results are gathered and returned to the user.

The user may decide to filter out motifs of length 4 or less
as they correspond to common short words, such as articles
and prepositions. The user allows an edit distance of 2 char-
acters so words like "fishes” and ”fishy” count as occurrences
for the motif "fish”. The length and approrimate matching
parameters are readily available in StarQL. The user in our
example may form and submit the following StarQL query.

SELECT RMOTIFS(wiki, FREQ=1000, \
MINLEN=4, MAXLEN=10, EDIT(3)) \ (11)
AS wikipats;

The Wikipedia archive is represented logically by one col-
lection but indexed using StarIN. The database first exe-
cutes the repeated motifs operation in parallel. Since the
motifs search space is a combinatorial tree, it is logically
partitioned into many sub-trees. On a supercomputer, the
StarQL optimizer finds that 2,048 cores can be fully uti-

Table 8: Expressing the same simple query using
PiQL and StarQL syntax.

Language Query
PiQL SELECT * FROM MATCH(R, p, "EEK", EXACT, 3)
StarQL SELECT EXACT(R, "EEK");

lized given the query workload. The original archive is not
accessed because StarIN is annotated with counts. The re-
sulting repeated motifs are also in the form of a suffix trie.
Therefore, further operations to extract the common suf-
fixes, for example, are easily executed on wikipats.

5. EXPERIMENTAL EVALUATION

This section presents different aspects of evaluating our
StarQL language: the expressiveness power, the StarQL
query optimizer, the StarIN scalability, and the overall per-
formance of using StarQL. We implemented StarDB [28] us-
ing C/C++ and MPI based on StarQL and StarIN. StarDB
uses a master/worker architecture. As an MPI-based sys-
tem, StarDB can be used in a workstation, cluster and su-
percomputer. StarDB is a large-scale string database that
is available for download ©.

5.1 StarQL Expressiveness

StarQL expresses queries in a natural and readable way.
Consider the simple query of finding exact matches of EEK
in a collection of protein sequences R. Table 8 shows this
query in PiQL and StarQL. While StarQL is more readable,
PiQL [31] is also limited to matching biological sequences.
For instance, PiQL cannot express a simple query over a
text archive like the following StarQL query, which returns
the unique words of lengths 5 to 7 from Wikipedia prefixes.
SELECT PREFIXES(Wiki, minlen=5, maxlen=7);

BLAST is the widely used bioinformatics tool. We can
express a BLAST script in StarQL to efficiently execute
in StarDB. The BLAST workload was generated using the
human and mouse immunoglobulin variable region dataset
from NCBI’. This dataset is composed of 141,465 DNA se-
quences of lengths that range between 97 and 3,177,340. We
invoked BLAST version 2.0 with the default parameters for
the tool blastn and the query string ACCGTTCAGTT. To our
surprise, BLAST returns one match that represents a suf-
ficiently high-scoring ungapped alignment. In fact, BLAST
heuristics imply that the same BLAST command can yield
slightly different results between different runs.

We imported the dataset in StarDB and issued the fol-
lowing StarQL query. Since StarDB implements exact algo-
rithms, our StarQL query finds all results. Firstly, we find
two exact matches of the query string. Moreover, we find
35 approximately matching substrings that appear in the
dataset 451 times. From here, using StarQL we can further
process these results to analyze the dataset by running other
operators without the need to move data between systems
and without running other procedural tools.

SELECT APPROX(igSeqNt, "ACCGTTCAGTT", USER(1));

Furthermore, we compare StarDB capabilities against state-
of-the-art procedural repeated motif extractors; namely PSMILE

Shttp://cloud kaust.edu.sa/Pages/stardb.aspx
"ftp://ftp.ncbi.nih.gov/blast /db/FASTA /igSeqNt.gz

1000000
100000 OPlan A (naive)
M Plan B (optimized)
10000
1000
100
ey |
/I |
1

Intermediate strings Query time (sec)

Figure 8: Semantic-based optimizations of StarQL
queries dramatically decreases intermediate results
and reduce serial execution time by replacing opera-
tions while maintaining semantics. Plan A and Plan
B are shown in Table 7.

[7], FLAME [12], and VARUN [2]. Although the procedu-
ral codes are specialized, StarDB generates the same out-
put up to 3 orders of magnitude faster. For example, for a
certain exact-length motif query, FLAME runs for 4 hours
while StarDB finishes serially in 1 hour and using 12 cores
in 7 minutes. StarDB is able to handle 3 order of magni-
tude larger strings and scaled efficiently on a supercomputer
whereas the only parallel motif extractor [7] reported scaling
to 4 cores.

5.2 The StarQL Query Optimizer

In this experiment, we show the benefit of StarQL’s semantic-

based query optimization. In StarQL, string operators could
result in large string collections so query plans with small in-
termediate results and less complex operations are favoured.
Figure 8 shows the size of intermediate results and execu-
tion times for the query plans discussed in Table 7 of Sec-
tion 3.3. The gain in memory footprint and execution time
from semantic-based optimization is significant. Note that
the optimized query executes more operations but (i) they
are lightweight as the aggregate and filter operations answers
are readily available in the data structure of StarQL model,
and (ii) they result in less data access and intermediate re-
sults. Fewer intermediate results consumes less memory and
requires less instructions to build and use in further steps.

5.3 Scalability and Parallel Support

For time-consuming string queries, scaling out to finish
in reasonable time is essential for online analysis of strings.
The parallelization of string operations supported by StarQL’s
data model and proposed data structures effectively achieves
this goal. For a StarQL query that involves generating all
motifs, the efficient representation of StarIN reduced the se-
rial execution time from 4 hours to less than an hour and
a half on the same hardware. This query is executed by
StarDB in less than a minute when scaling out to 256 cores.
Table 9 shows StarDB using a supercomputer to execute a
more complex query in seconds instead of hours.

Due to the flexibility of StarIN, we are able to find the
best problem decomposition and determine the degree of
parallelism to highly utilize resources with minimal over-
head. Therefore, StarDB automatically tunes the execu-

Table 9: StarDB’s scalability on a Blue Gene/P su-
percomputer. Query load is increased by increasing
the allowed hamming diastance to 4. The serial ex-
ecution time of the query is 5.2 hours. Speedup
efficiency is the ratio of speedup to number of cores
with an optimal value of 1.

SELECT RMOTIFS(dna, freq=10000, len=12,

hamming(4));
Cores | Time (sec) Speedup Efficiency
512 38 0.97
1024 19 0.97
2048 10 0.97
4096 5 0.92
8192 3 0.76

Table 10: StarDB’s automatic tuning enhances exe-
cution using the same number of cores by determin-
ing the best problem decomposition. Moreover, the
utilization of resources is enhanced dramatically as
indicated by measured speedup efficiency (SE).
SELECT RMOTIFS(dna, freq=10000, minlen=12,

hamming(3));
w/o Auto Tuning with Auto Tuning
Cores
Execution time SE | Execution time SE
1] 16 days 1.00 | 1.6 days 1.00
16 | 2.7 Thours 1.00 | 2.7 hours 1.00

1,024 | 2.5 minutes 0.96 | 2.4 minutes 0.99
2,048 | 1.5 minutes 0.79 | 1.2 minutes 0.98
4,096 | 53 seconds 0.67 | 39 seconds 0.91

tion parameters (e.., problem decomposition and number
of cores to use) to achieve the near optimal resource utiliza-
tion. Because we can generate many small tasks, we utilize
our automatic tuning framework [25] to find the best de-
composition (i.e., maximum number of tasks with minimal
parallel overhead) and estimate the serial and parallel run-
times to predict utilization. Table 10 shows the gain in time
and utilization by automatically tuning the execution of the
same query on the supercomputer.

6. RELATED WORK

Several string data models and languages are theoritically
sound but impractical to implement [15]. Richardsons intro-
duced one of the early declarative query language for strings
[24]. In his model, a string starts with a symbol and the ev-
ery symbol is considered the next instance of the symbol to
its left. However, it is known that temporal logic modali-
ties have limited support for recursion or iteration [33], both
needed for string queries.

There is no standard mechanism for managing and analyz-
ing strings at the scale needed nowadays. Algorithms that
handle long strings or large collections of strings are imple-
mented within disjoint applications. For example, BLAST
[1] is used for matching; it finds regions of local similarity

between biological sequences. Another example is KAT &,
a k-mer counting tool used to analyze substring frequency
spectra. Currently, string analytics require running multiple
standalone applications. Users need to move data between
applications that use different formats and have different re-
quirements in order to draw conclusions. This gave rise to
string analysis pipeline systems (e.g., SeqWare Pipeline?)
for users to define the steps and order of execution.

Attempts for native string support in databases exist, but
most cases take an application-specific approach. SRS is an
information indexing and retrieval system [10]. It targets
flat files and makes use of the internal structure of their for-
mats. SRS only allows users to draw links between different
files using atomic non-sequence fields [11]. For example,
SRS users can only query the description fields of FASTA-
formatted and EMBL-formatted nucleotide and peptide se-
quences. SEQ is a string database system based on distinct
domains for string elements and their underlying order type
[29]. This is beneficial if users need to compute moving av-
erages on time series. However, SEQ model is limits parsing
tasks, such as matching.

Traditional databases do not provide adequate support
for strings and their operations. Present-day data manage-
ment methods were designed and implemented to deal with
challenges different than those of large-scale string analytics.
To handle strings in database systems differently, several at-
tempts were proposed in the last two decades. They were
either mere extensions or novel approaches.

Relational databases can be used to store strings in ta-
bles using columns of text or binary large object (blob)
data types. However, relational databases deal with strings
as atomic entities and queries over their internal structure
are limited to the LIKE construct in the de facto query lan-
guage, SQL. Simple extensions build on the rich and well-
established data management literature and systems by in-
troducing strings as relational domains [8]. Works of this
type include extensions to the relational calculus [13, 16,
14, 4]. Periscope/SQ [32] extended PostgreSQL with match-
ing operations over biological sequences. It is challenging to
express common string queries, such as motifs and k-mers,
with only matching operations. Moreover, complex queries
require the efficient utilization of large infrastructures to fin-
ish in reasonable times. Therefore, Periscope/SQ reported
simple matching queries over sequences of 5,000 symbols.

Most relational databases support a limited number of
data types. To handle strings as first-class types, researchers
moved to object-oriented databases [15, 3]. Nevertheless,
support of string operations in object-oriented databases
does not provide an ultimate solution as meta data over-
head grows. Generally, extentions of existing databases are
limited by their original data models and are undesired as
they require the modification of mature systems [30].

7. CONCLUSION

This paper proposed StarQL, a declarative query lan-
guage for strings. StarQL is designed to support string
processing that targets large datasets and large infrastruc-
tures (i.e., clusters and supercomputers). The paper pre-
sented a native string data model that allows StarQL to
provides high degree of expressiveness within different appli-

Shttp://www.tgac.ac.uk/KAT/
“https://seqware.github.io/docs/6-pipeline/

cation domains. For instance, StarQL managed easily to ex-
press workloads written in BLAST. Moreover, our proof-of-
concept system implementing the StarQL language and its
data model shows orders of magnitudes better performance
comparing to state-of-the-art procedural systems. This is
because StarQL is equipped with semantic-based optimiza-
tion. We already need to deal with large strings that may
not fit on a single machine. Similarly, some string queries
are computationally demanding and require parallel execu-
tion to finish in reasonable times. Therefore, we proposed
StarIN, a scalable and efficient data structure that strikes a
balance between index size, preprocessing time and machine

scalability.
8. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and

2]

[6]

7]

8]

[10]

[11]

[12]

D. J. Lipman. Basic local alignment search tool.
Journal of molecular biology, 215(3):403-410, 1990.
A. Apostolico, M. Comin, and L. Parida. VARUN:
discovering extensible motifs under saturation
constraints. IEEE/ACM Transactions on
Computational Biology Bioinformatics, 7(4):752-26,
2010.

N. Balkir, E. Sukan, G. Ozsoyoglu, and G. Ozsoyoglu.
Visual: a graphical icon-based query language. In
Data Engineering, 1996. Proceedings of the Twelfth
International Conference on, pages 524-533, Feb 1996.
M. Benedikt, L. Libkin, T. Schwentick, and

L. Segoufin. String operations in query languages. In
Proc. of PODS, pages 183-194, 2001.

M. Benedikt, L. Libkin, T. Schwentick, and

L. Segoufin. Definable relations and first-order query
languages over strings. J. ACM, 50(5):694-751, Sept.
2003.

J. A. Blake, C. J. Bult, et al. Beyond the data deluge:
data integration and bio-ontologies. Journal of
biomedical informatics, 39(3):314-320, 2006.

A. M. Carvalho, A. L. Oliveira, A. T. Freitas, and
M.-F. Sagot. A parallel algorithm for the extraction of
structured motifs. In Proceedings of the ACM
Symposium on Applied Computing (SAC), pages
147-153, 2004.

C. Date. An Introduction to Database Systems.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 8 edition, 2003.

K. Dube, E. Mansour, and B. Wu. Supporting
collaboration and information sharing in
computer-based clinical guideline management. In
18th IEEE Symposium on Computer-Based Medical
Systems (CBMS 2005), 23-24 June 2005, Dublin,
Ireland, pages 232-237, 2005.

T. Etzold and P. Argos. SRS — an indexing and
retrieval tool for flat file data libraries. Computer
applications in the biosciences : CABIOS, 9(1):49-57,
1993.

T. Etzold and P. Argos. Transforming a set of
biological flat file librariesto a fast access network.
Computer applications in the biosciences : CABIOS,
9(1):59-64, 1993.

A. Floratou, S. Tata, and J. M. Patel. Efficient and
Accurate Discovery of Patterns in Sequence Data Sets.
IEEE Transactions on Knowledge and Data

(13]

(14]

(15]

(16]

(17]

18]

(19]

(20]

21]

(22]

23]

Engineering (TKDE), 23(8):1154-1168, Aug. 2011.

S. Ginsburg and X. Wang. Pattern matching by
rs-operations: Towards a unified approach to querying
sequenced data. In Proceedings of the Eleventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS 92, pages 293—-300, New
York, NY, USA, 1992. ACM.

S. Ginsburg and X. S. Wang. Regular sequence
operations and their use in database queries. J.
Comput. Syst. Sci., 56(1):1-26, Feb. 1998.

G. Grahne, R. Hakli, M. Nykénen, H. Tamm, and

E. Ukkonen. Design and implementation of a string
database query language. Information Systems,
28(4):311-337, 2003.

G. Grahne, M. Nykénen, and E. Ukkonen. Reasoning
about strings in databases. In Proceedings of the
Thirteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS
'94, pages 303-312, New York, NY, USA, 1994. ACM.
D. Gusfield. Algorithms on strings, trees, and
sequences: computer science and computational
biology. Cambridge University Press, 1997.

E. Mansour, A. Allam, S. Skiadopoulos, and

P. Kalnis. Era: efficient serial and parallel suffix tree
construction for very long strings. Proceedings of the
VLDB Endowment, 5(1):49-60, Sept. 2011.

E. Mansour, A. El-Roby, P. Kalnis, A. Ahmadia, and
A. Aboulnaga. RACE: A scalable and elastic parallel
system for discovering repeats in very long sequences.
PVLDB, 6(10):865-876, 2013.

A. Mathur, A. Sihag, E. Bagaria, S. Rajawat, et al. A
new perspective to data processing: Big data. In
Processdings of INDIACom, pages 110-114, 2014.

G. Mecca and A. J. Bonner. Query languages for
sequence databases: Termination and complexity.
IEEFE Trans. on Knowl. and Data Eng.,
13(3):519-525, May 2001.

T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P.
Snyder, and A. E. Barron. Landscape of
next-generation sequencing technologies. Analytical
chemistry, 83(12):4327-4341, 2011.

A. Rajasekar. String-oriented databases. In
Proceedings of the String Processing and Information
Retrieval Symposium & International Workshop on
Groupware, SPIRE 99, 1999.

J. Richardson. Supporting lists in a data model (a
timely approach). In Proceedings of the 18th
International Conference on Very Large Data Bases,
VLDB ’92, pages 127-138, San Francisco, CA, USA,
1992. Morgan Kaufmann Publishers Inc.

M. Sahli, E. Mansour, T. Alturkestani, and P. Kalnis.
Automatic tuning of bag-of-tasks application. In Data
Engineering (ICDE), 2015 IEEE 31st International
Conference on, April 2015.

M. Sahli, E. Mansour, and P. Kalnis. Parallel motif
extraction from very long sequences. In Proceedings of
the ACM International Conference on Information
and Knowledge Management (CIKM), 2013.

M. Sahli, E. Mansour, and P. Kalnis. Acme: A
scalable parallel system for extracting frequent
patterns from a very long sequence. The VLDB
Journal, 23(6):871-893, Dec. 2014.

[28]

[29]

[30]

M. Sahli, E. Mansour, and P. Kalnis. Stardb: a
large-scale dbms for strings. In Proc. of VLDB,
volume 8, pages 18441847, 2015.

P. Seshadri, M. Livny, and R. Ramakrishnan. The
design and implementation of a sequence database
system. In Proceedings of the 22th International
Conference on Very Large Data Bases, VLDB ’96,
pages 99-110, San Francisco, CA, USA, 1996. Morgan
Kaufmann Publishers Inc.

M. Stonebraker and U. Cetintemel. ”one size fits all”:
An idea whose time has come and gone. In
Proceedings of the 21st International Conference on
Data Engineering, ICDE 05, pages 2-11, Washington,
DC, USA, 2005. IEEE Computer Society.

S. Tata, J. Friedman, and A. Swaroop. Declarative
querying for biological sequences. In Data
Engineering, 2006. ICDE ’06. Proceedings of the 22nd
International Conference on, pages 87-87, April 2006.
S. Tata, W. Lang, and J. M. Patel. Periscope/SQ:
Interactive exploration of biological sequence
databases. In Proc. of VLDB, pages 1406-1409, 2007.
P. Wolper. Temporal logic can be more expressive. In
Foundations of Computer Science, 1981. SFCS ’81.
22nd Annual Symposium on, pages 340-348, Oct 1981.

