
An XML-Based Model for Supporting
Context-Aware Query and Cache Management

Essam Mansour and Hagen Höpfner

International University in Germany
School of Information Technology

Campus 3, D-76646 Bruchsal, Germany
essam.mansour@ieee.org, hoepfner@acm.org

Abstract. Database systems (DBSs) can play an essential role in fa-
cilitating the query and cache management in context-aware mobile in-
formation systems (CAMIS). Two of the fundamental aspects of such
management are update notifications and context-aware query process-
ing. Unfortunately, DBSs does not provide a built-in update notification
function and are not aware of the context of their usage. This paper
presents an XML model called XReAl (XML-based Relational Algebra)
that assists DBSs in extending their capabilities to support context-aware
queries and cache management for mobile environments.

1 Introduction

Database systems (DBSs) can play an essential role in facilitating the advanced
data management required to modern information systems, such as context-
aware mobile information systems (CAMIS). Usually, this advanced data man-
agement is provided by adding middle-wares over DBSs. Update notifications
[8] and context-aware query processing [9] are part of the fundamental manage-
ment aspects in CAMIS. Unfortunately, DBSs does not provide a built-in update
notification function and are not aware of the context of their usage.

The main focus of this paper is to provide a model, which could be directly
integrated into existing DBSs. One of the main requirements for this model is to
be realized within DBSs in a way, which assists in extending DBSs capabilities
to support cache management and the processing of context-aware queries as
built-in DBS functions. Such extension is to reduce the code-complexity and
increase the performance of CAMIS due to avoiding the middle-wares.

This paper presents a model called XReAl (XML-based Relational Algebra)
that supports context-aware queries and cache management in CAMIS. The
XReAl model provides XML representation for the contextual information of
the mobile clients, queries issued by these clients and manipulation operations.
This XML representation is to be stored as XML documents in modern DBSs
that provide XML management support, such as DB2 and Oracle.

The rest of this paper is organized as follows. Section 2 highlights related
work. Section 3 outlines the context-aware services and cache management.
Sections 4, 5 and 6 present the three sub-models of XReAl. Section 7 presents
our DBS-based implementation for XReAl. Section 8 outlines evaluation results.
Section 9 concludes the paper.

A.P. Sexton (Ed.): BNCOD 2009, LNCS 5588, pp. 107–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 E. Mansour and H. Höpfner

2 Related Work

In caching techniques, query results are stored and indexed with the correspond-
ing query [6]. So, one can analyze whether new queries can be answered com-
pletely or partially from the cache [10]. Semantic caches tend to use semantic
correlations between different cached items as a cache replacement criteria [1].
However, updating the base table is ignored in these works. Our proposed model
supports the cache maintenance as a DBS built-in function.

Different research efforts, such as [4,7], investigated into the topic of XML
algebra. Our proposed model, XReAl, is distinguished by providing an XML
representation for relational algebra queries. XReAl is to extend relational al-
gebra to support context-aware operators.

3 Query and Cache Management

This section discusses the management requirements for supporting advanced
context aware services. These services support mobile service providers to be
more receptive to mobile users needs. The management requirements are classi-
fied mainly into two categories query and cache requirements.

3.1 Advanced Context Aware Services

In our proposed context aware services, we assume a mobile service provider
(MSP) is to prepare for their customers contextual information document. We
utilized the classification of contexts in the ubiquitous computing environment
proposed by Korkea-Aho in [5]. This document divides the contextual infor-
mation into several contexts, physical, environmental, informational, personal,
social, application, and system. For the physical context, MSP detects the lo-
cation of a mobile user (MS) and the corresponding time of such location. The
environmental context includes information related to the current location of
MS or locations of interest, such as user’s home and work location. Exam-
ples for information related to this context are a traffic jam, parking spots,
and weather.

A mobile user might ask MSP to consider interesting business quotes in the
user’s informational context. For example, the user might need to know the
newspaper’s name, date, section, and page number combined with the quote
value. The personal context records the user’s personal plans, such as plans for
working days, and hobbies, such as drinking coffee or visiting new food shops.
The social context includes information about social issues, such as the user’s
kids, neighbors and social activities. The application context includes informa-
tion concerning used applications, such as email accounts of the user in order
to provide notification by received emails. Finally, the system context records
information concerning systems used by the user, such as heating system and
water supply. The users expects a very high level of security and privacy for their
contextual information. The mobile users are supposed to issue ad-hoc or pre-
register queries. These queries might be continuous or non-continuous queries.

An XML-Based Model for Supporting Context-Aware Query 109

A B
q : {π|πa}([σ]([ρ](R)))
q : {π|πa}([σ](ρ(q)))
q : {π|πa}([σ](cp))

cp : {[ρ](R)|ρ(q)} × {[ρ](S)|ρ(q)|cp}
q : {π|πa}(q{∪| − |∩}q)

QS ←πShopName,tele,PID(σstatus=′NEW′ (shop))

QL ←πstreet,ID(σpostal code=76646(location))

Q ←πShopName,tele,street
(σPID=ID(QS×QL))

Fig. 1. A) the relational algebra recursive structure; B) A relational algebra of NCQ

3.2 Query Representation

In mobile information systems, applications generate queries and send them to
the server. Therefore, there is no need to support descriptive query languages,
such as SQL. Queries are to be represented in a useful way for storage and
retrieval. The relational algebra representation [2] is an efficient way to represent
queries over data stored in relational database. However, one can always translate
SQL-queries into such expressions.

The query notation used in this paper is the notation of the relational algebra
operators [2], such as selection (σ), θ-join (��θ), and projection (π). The θ-join is
represented in our work as Cartesian product (×) and selection (σ). It is possible
to optimize the transformation into query trees in order to improve the support
for query indexing by reducing the number of alternatives.

In general and formally, a database query q can have the recursive structure
shown in Figure 1.A. A relational algebra query can be interpreted as a tree.
However, there are several semantically equivalent relational algebra trees for
each query. We, for the purpose of detecting update relevance [8], push selection
and join operations inside a join using the algebraic properties for query opti-
mization [2]. Then, we convert the θ-join to Cartesian product (×) and selection
(σ) to be in the form shown in Figure 1.A.

The query NCQ that retrieves the attributes (ShopName, Tele and street)
of shops, whose status is NEW and postal code is the postal code of the user’s
current position. Assume that the user was in the area, whose postal code is
76646, when the user requested the result of the query NCQ. The tables shop
and location are joined using the attributes PID and ID. The query Q shown in
Figure 1.B is an example of a relational algebra query for the query NCQ. The
query Q is represented using the recursive structure shown in Figure 1.A.

3.3 Cache Management

Managing redundant data is a must for mobile information systems. However,
redundancies might also lead to inconsistencies. Replication techniques use syn-
chronization approaches but tend to strongly restrict the language used for defin-
ing replicas. Caches, on the other hand, are created by storing queried data
implicitly. In [3,8] we discussed how to calculate the relevancy of server side up-
dates for data cached on mobile devices and how to invalidate outdated caches.
Therefore, the server must keep track of the queries posted by the mobile clients.
Hence, the DBS must maintain a query index that indexes the caches and the
clients. Each server update has to be checked against this index. All clients that
hold updated data must be at least informed by such update.

110 E. Mansour and H. Höpfner

4 Formalizing Contextual Information

This section presents the overall structure of the XReAl mobile client sub-model
and examples for the sub-model.

4.1 The Structure

The mobile client sub-model consists of an identification attribute, called MCID,
and a sequence of elements (physical context, environmental context, informa-
tional context, personal context, social context, application context, and system
context). Figure 2.A shows the XML schema of mobile client at an abstract level.

A B

mclient

informational social personal physical applicationenvironmental system
context contextcontextcontext

MCID

element
attribute
sequence

optinal
edge

1

0

mandatory

contextcontextcontext

00100 0 0

<mclient MCID=”MC101”>
+<physical>
+<system>
+<application>
+<environmental>
+<personal>
+<social>
+<informational>

</mclient>

Fig. 2. A) the XReAl query model; B) the XReAl contextual information document

Any mobile client is assigned a MCID number, to be recognized by the system.
Physical context provides information related to location and time. The location
is a position, elevation, and direction. The position could be represented using a
geographical coordinates and/or relative coordinates, such as a street, area and
city. The time represents time zone, which could be inferred from the location
information. The time zone determines the absolute time, day, week, month,
quarter, and year. Physical context might help to infer information at a generic
level related to environmental context, such as weather and light. Other methods
are needed to determine an accurate environmental information.

Informational context formalizes information of interest to the mobile client,
such as currency rates, stoke quotes and sports scores. Personal context spec-
ifies information such as health, mood, biographical information, habit and
activities. Social context formalizes information concerning group activity and
social relationships. Application context models information, such as email re-
ceived and websites visited. The system context represents information related
to systems used by the client and specs of her mobile, such as processor, and
memory.

The user of a mobile client might provide personal and social information to
be recorded as contextual information related to her mobile client. It is assumed
that the minimum level of information is the information of physical context.
So, the physical context element is a mandatory element. However, the other
elements are optional. Furthermore, it is assumed that there is a repository of
contextual information related to the environment, in which mobile clients are
moving, such as parking spots or food shops.

An XML-Based Model for Supporting Context-Aware Query 111

4.2 Examples

Figure 2.B shows the contextual information document specified using XReAl
that is generated by a MSP for one of its customers as discussed in Section 3.
The contextual information document is assigned MC101 as an ID. The XML
language is very flexible in representing variety of contextual information. Figure
3 depicts part of the physical and informational contexts. Figure 3.A shows a
representation for information of the relative position, and Figure 3.B illustrates
a representation for business information as a part of informational context.

A B
<relative position>

<country>Germany</country>
<city>Bruchsal</city>
<area>south</city>
<street>Durlacher<street>
<postal code>76646</postal code>

</relative position>

<quote>
+<value>
+<newspaper>
+<section>
+<date>
+<description>

</quote>

Fig. 3. A) part of the physical context, B) part of the informational context

5 Formalizing Queries

This section presents the XReAl sub-model for formalizing a relational algebra
query based on the recursive structure discussed in Section 3.

5.1 Fundamental Elements

The XReAl model formalizes a relational algebra query as a query element
that consists of two attributes, QID and MCID, and a sequence of elements,
relations, projection and join. Figure 4.A shows the XML schema of XReAl
query. The QID attribute represents a query identification. The MCID attribute
represents the identification number of a mobile client that issued the query. A
query might access only one relation. Therefore, a query element contains at least
a relations element and projection element, and might has a join element. The
query sub-model provides a formalization for queries represented as discussed in
Section 3.

The relations element is composed of a sequence of at least one relation el-
ement. The relation element consists of an identification attribute, called RID,
and a sequence of elements, name, rename, selections and rprojection. The name
element represents the relation name. The rename element denotes the tempo-
rally name used to refer to the relation in the query. The selection element is
composed of a sequence of a spredicate element of type predicateUDT. The rpro-
jection element consists of a sequence of at least one attribute element of type
attributeUDT. The predicateUDT type is a complex type that is able to repre-
sent simple predicate or composite predicate. The projection element is similar
to the rprojection element, but projection represents the original projected at-
tributes used in the query. The join element specifies the join predicates used to
join together the relations (sub-queries).

112 E. Mansour and H. Höpfner

A B

query

MCIDQID

jpredicate

1 0

11..n

relation

projection

1..n

attribute

1

joinrelations

RID

selection

1 0 0 0

rename rprojectionname

1 1..n

spredicate attribute

0
1mandatory

edge
optinal

multiplicity

attribute
sequence

element

1..n

rpredicate junction lpredicate

1 1 1

simplePredicate compositePredicate

attribute

1mandatory

choice
edge

sequence

element

operandoperatorattribute

value

1 1 1

predicateUDT

Fig. 4. A) the XML Schema of the query model; B) the predicateUDT Schema

The query sub-model is able to represent a query, such as the query Q shown in
Figure 1.B. Th query Q consists of two sub-queries QS and QL. The specification
of the query Q is to contain the elements relations, projection and join. Each sub-
query is to be represented as a relation element that has its own selection and
rprojection element. The projection element represents the original projection of
the query. The join element represents the join predicate that joins QS and QL.

5.2 User Defined Data Types

The query sub-model has two main user defined data types (UDT), predica-
teUDT and attributeUDT. The predicateUDT type is a complex type composed
of one of the elements simplePredicate or compositePredicate, as depicted in
Figure 4.B. The simplePredicate element consists of a sequence of elements, at-
tribute, operator and operand. The attribute element is of type attributeUDT.
The operator element is of type logicalOperatorUDT, which is a simple type that
restricts the token datatype to the values (eq, neq, lt, lteq, gt, and gteq). Re-
spectively, they refer to equal, not equal, less than, less than or equal, greater
than, and greater than or equal. The operand element is composed of one of
the elements value or attribute. The value element is to be used with selection
predicates. The attribute element is to be used with join predicates.

The compositePredicate element consists of a sequence of elements, rpredicate,
junction and lpredicate. The rpredicate and lpredicate elements are of type pred-
icateUDT. Consequentially, the rpredicate and lpredicate elements might consist
of simple or composite predicate. The junction element is of type junctionUDT,
which is a simple type that restricts the token datatype to the values (and
and or). The attributeUDT type is a complex type composed of an attribute,
called ofRelation, and a sequence of elements, name and rename. The ofRelation
attribute represents a relation ID, to which the attribute belongs. The name
element denotes the name of the attribute. The rename element represents the
new name assigned to the attribute in the query.

An XML-Based Model for Supporting Context-Aware Query 113

<query QID=”QID1” MCID=”MC101”>
<relations>

+<relation RID=”RID01”>
+<relation RID=”RID02”>

</relations>
+<projection>
<join>

<jpredicate>
<simplePredicate>

<attribute ofRelation=”RID01”>
<name>PID</name>

</attribute>

<operator>eq</operator>
<operand>

<attribute
ofRelation=”RID02”>

<name>ID</name>
</attribute>

</operand>
</simplePredicate>
</jpredicate>
</join>
</query>

Fig. 5. The specification of NCQ

<relation RID=”RID01”>
<name>shop</name>
<selection>

<spredicate>
<simplePredicate>

<attribute>
<name>status</name>

</attribute>
<operator>eq</operator>
<operand>

<value>’NEW’</value>
</operand>

</simplePredicate>
</spredicate>

</selection>

<projection>
<attribute>

<name>ShopName</name>
</attribute>
<attribute>

<name>tele</name>
</attribute>
<attribute>

<name>PID</name>
</attribute>

</projection>
</relation>

Fig. 6. The specification of the relation RID01

5.3 An Example

Figure 5 illustrates an overview of the XReAl specification for the query NCQ,
whose relational algebra expression is shown in Figure 1.B. This specification
consists of a query element. The query ID is QID1 and is issued by a mobile
client, whose ID is MC101. There are two sub-queries over the relations (shop
and location), which are joined together using one join predicate.

Figure 6 illustrates the XReAl specification of the sub-query QS, which
queries the relation (shops). The ID of the relation is RID01. This specifica-
tion consists of a relation element, whose name is shop. The selection predicate
associated with shop checks that the shop’s status is equal to NEW. There is
also a projection operation that picks the attributes (ShopName,tele and PID).

6 Formalizing Manipulation Operations

The following sub-sections present the structure of moperation and examples.

6.1 The Structure

A manipulation operation might be an insert, delete or update operation.
Figure 7 shows the XML schema of the moperation component, which might
consists of one IStatement, DStatement, or UStatement. The IStatement element

114 E. Mansour and H. Höpfner

rname set where

1 1 0

aname avalue

rname

1 1

1..n

1

1 1 1

attribute

IStatement DStatement UStatement

DID ReceivedAtReceivedAtIID

attributes rname where

ReceivedAtUID

0

1..n

0
1

multiplicity
mandatory
optinal
edge
choice
sequence

attribute
element

moperation

Fig. 7. The XML Schema of the manipulation operations

<IStatement IID=”I3001”
receivedAt=”2008-09-12T11:34:27”>

<rname>shop</rname>
<attributes>

<attribute>
<aname>SID</aname>
<avalue>9905</avalue>

</attribute>
<attribute>

<aname>
SHOPNAME</aname>
<avalue>MEMO</avalue>

</attribute>
<attribute>

<aname>PID¡/aname>
<avalue>102¡/avalue>

</attribute>

<attribute>
<aname>TELE</aname>
<avalue>111333888</avalue>

</attribute>
<attribute>

<aname>RATE</aname>
<avalue>7</avalue>

</attribute>
<attribute>

<aname>
STATUS</aname>
<avalue>NEW</avalue>

</attribute>
</attributes>
</IStatement>

Fig. 8. The specification of MO1

consists of attributes, IID and ReceiveAt, and a sequence of elements, rname and
attributes. The rname element represents the name of the manipulated relation.
The attributes element represents the attributes of the inserted tuple and the
corresponding value for each attribute.

The DStatement element consists of attributes, DID and ReceiveAt, and a
sequence of elements, rname and where. The where element is of type predica-
teUDT. The UStatement element consists of attributes, UID and ReceiveAt, and
a sequence of elements, rname, set and where. The where element is of type pred-
icateUDT. The set element is of type simplePredicate and restricted to use an
equal operator only. Assume the update statement modifies only one attribute.

6.2 Examples

It is assumed that the server is to execute several manipulation operations over
the shop table. The first operation (MO1) inserts a new shop, whose id, name,
tele, rate and status are 9905, MEMO, 111333888, 7 and NEW, respectively.
This shop is located in Karlsruhe, whose position ID is 102. The second operation
(MO2) deletes a shop tuple, whose id is 9903.

An XML-Based Model for Supporting Context-Aware Query 115

<DStatement DID=”D5001”
receivedAt=”2008-09-12T11:34:27”>
<rname>shop</rname>
<where>

<spredicate>
<simplePredicate>

<attribute>
<name>SID</name>

</attribute>

<operator>eq</operator>
<operand>

<value>9903</value>
</operand>

</simplePredicate>
</spredicate>

</where>
</DStatement>

Fig. 9. The specification of MO2

<UStatement UID=”U7001”
receivedAt=”2008-09-12T11:34:27”>
<rname>shop</rname>
<set>

<spredicate>
<simplePredicate>

<attribute>
<name>RATE</name>

</attribute>
<operator>eq</operator>
<operand>

<value>7</value>
</operand>

</simplePredicate>
</spredicate>

</set>

<where>
<spredicate>

<simplePredicate>
<attribute>

<name>PID</name>
</attribute>
<operator>eq</operator>
<operand>

<value>103</value>
</operand>

</simplePredicate>
</spredicate>

</where>
</UStatement>

Fig. 10. The specification of MO3

The third operation (MO3) updates the rate of the shop tuples, which is
located at 103, to seven. Figure 8 illustrates the XReAl specification for the
insert operation. IStatement of the insert operation consists of attributes, IID
whose value is I3001 and receivedAt that determines the receipt time. There are
six elements of type attribute that specify the name and value of an attribute,
such as SID and 9905 for the first attribute of the insert statement. Figure 9
illustrates the XReAl specification for the delete operation. DStatement of the
delete operation consists of attributes, DID whose value is D5001 and receivedAt
that determines the receipt time.

There is a where element under DStatement that formalizes the where clause
of the delete statement, which is SID = 9903. Figure 10 illustrates the XReAl
specification for the update operation . UStatement of the update operation con-
sists of attributes, UID whose value is U7001 and receivedAt that determines the
receipt time. The set element formalizes the set clause of the update statement,
which is RATE = 7. The where element of UStatement formalizes the where
clause of the update operation, which is PID = 103.

7 Realizing the XReAl Model within DBSs

Modern DBSs support XML data management by providing an XML data type
with storage and retrieval support. The XReAl specifications are represented
as well-formed XML documents that could be stored in an attribute of XML
type. This XML document could be validated against an XML Schema.

116 E. Mansour and H. Höpfner

detected_at

issues

received_at
Status

MaID
Type

d

MCID

MCINFO QTree

QID

[0,N]

[1,1][0,N]

[0,N]

[1,1]

[1,1] [1,1]

causes

MClient Query

notifies references

Manipulation

[0,N]

Insert

Delete

UpdateUSTMT

DSTMT

ISTMT

Notification

Fig. 11. The ER diagram of the XReAl Repository

7.1 The XReAl Repository Structure

The XReAl repository is based on a relational database schema, in which XML
type is supported to store well-formed and validated XML documents. Figure
11 depicts the database schema of the XReAl repository. The schema consists
of four fundamental relations, mclient, query, manipulation, and notification.

The relations, mclient and query, consist of a primary key attribute (MCID
and QID) and an attribute of XML type (MCINFO and QTree). Each manipu-
lation operation has an identification number and is classified into three types,
insert, delete, and update. The attributes MaID and Type store the identification
number and the type of the manipulation operation. Both attributes represent
the primary key of the relation. Manipulation operations are classified also into
two status new (N) or tested (T) operations. The Status attribute represents the
status of an operation. The time at which the operation is received is to be stored
into the received at attribute. The ISTMT, DSTMT and USTMT attributes are
of XML type and store XML documents representing XReAl specification for
insert, delete or update operations respectively. The content of the attributes of
XML type is to be validated by the XML schema of the XReAl model.

7.2 Repository Maintenance

The XReAl specifications are to be maintained (modified or queried) as any
other XML documents using XQuery scripts. Modern DBSs provide means for
maintaining the XML documents. In particular, DB2, which was adopted in this
research, supports both the XQuery language and the XQuery update facilities
provided by W3C. Moreover SQL/XML language is also supported by DB2. Such
language provides support for querying the relational data of the application
and the XReAl specifications. That assists in providing a unified management
environment within the DBS for CAMIS.

8 Evaluation

We have utilized DB2 Express-C 9.5 and the Sun Java 1.6 language to imple-
ment XReAl, and built-in functions within DB2 for update notification and the
context-aware query processing. This section outlines the fundamental ideas of
these functions, and shows our empirical results of the update notification.

An XML-Based Model for Supporting Context-Aware Query 117

8.1 Update Notification

Based on the XReAl model, we have developed DBS-built-in method [8] that
detects the relevance of manipulation operations over multi-set semantics of
the relational data model. The modified data is specified by a manipulation
operation, which is formalized using XReAl. Also, the cached data is specified
by a query, which is formalized using XReAl.

The main idea of detecting the relevancy of an operation is to check the in-
tersection between the specifications of the operation and query. A non-empty
intersection means that there is cached data affected by the operation. Conse-
quentially, the operation is a relevant update. For more details concerning our
method for update notification based on XReAl, the reader is referred to [8].

As shown in Figure 11, a manipulation operation might cause notification(s)
to be sent to mobile clients issuing queries, whose cached result intersects with
data affected by the manipulation operation. The notification relation shown in
Figure 11, consists of the attributes, MCID, QID, (MaID, Type) and detected at
that represents the time at which the notification is detected. The tuples of the
notification relation are to be inserted as a result of testing the intersections
between cached and modified data.

8.2 Context-Aware Query Processing

The XReAl specifications of the contextual information is the base for process-
ing any context-aware query. Our main idea is to represent the context-aware se-
mantics using relational algebra operations. The specifications of the contextual
information and a query is used to generate an instance of this query according
to the current context(s) of the user, who issued this query. This instance is
generated by replacing relatives attributes with its corresponding values from
the context of the user.

The query NCQ shown in Figure 1.B is an example for such process. Figures 5
and 6 show part of the specification of the instance query. Finally, a SQL query is
generated from such instance and executed using the DBS, which at the same time
manages the relational data of the application, in this case shops database. Our
context-aware query processor is in-progress.

We are implementing the processor as built-in DBS function supported with
Java-stored procedures. Currently, we are supporting context-aware queries based
on location specified using relative position, such as postal code. More advanced
context-aware functions, such as close to and towards, are to be supported.

8.3 Experimental Results

Our experiments were done on a standard PC running Ubuntu 8.04 Linux (In-
tel(R) Core(TM)2 Duo CPU @ 2.20 GHz with 2 GB of RAM). Figure 12 illus-
trates the time consumption for registering queries on the server and for checking
the relevance of insert, update and delete operations. As shown in Figure 12, our
method is scalable to the number of queries registered in the systems. Moreover,
the maximum required time for checking the relevancy of a manipulation oper-
ation to 16,384 related queries is approximately 50 seconds.

118 E. Mansour and H. Höpfner

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
ec

on
ds

Number of queries

Registering a query
Checking relevance of insert operations

Checking relevance of delete operations
Checking relevance of update operations

Fig. 12. Evaluation of time consumption

9 Conclusions and Outlook

This paper has presented an XML model called XReAl (XML-based Relational
Algebra) that assists DBSs in extending their capabilities to support context-
aware queries and cache management for mobile environments. XReAl models
the contextual information related to mobile clients, queries issued by these
clients and manipulation operations, such as insert, delete and update.

The main advantages of XReAl are inherited from the use of XML, such as: 1)
flexibility in exchange and sharing the XReAl specification, 2) high compatibil-
ity in representing relational algebra query trees, and 3) seamless integration of
XReAl management into DBS. The third point leads to performance improve-
ment due to avoiding several middle-wares introduced to support the advanced
management of CAMIS, such as update notifications and context-aware query
processing.

The presented work is part of a continuous research project aiming at devel-
oping a framework for advanced query and cache management in CAMIS based
on DBSs. The development of our proposed context-aware query processor is in-
progress. There is a need to extend relational algebra to represent context-aware
functions, such as close to, around, towards, and approaching.

References

1. Dar, S., Franklin, M.J., Jónsson, B., Srivastava, D., Tan, M.: Semantic Data
Caching and Replacement. In: Proc. of 22nd International Conference on Very
Large Data Bases (VLDB 1996), September 1996, pp. 330–341. Morgan Kaufmann,
San Francisco (1996)

2. Elmasri, R., Shamkant, B.N.: Fundamentals of Database Systems. Addison Wesley,
Reading (2007)

An XML-Based Model for Supporting Context-Aware Query 119

3. Höpfner, H.: Relevanz von Änderungen für Datenbestände mobiler Clients. VDM
Verlag Dr. Müller, Saarbrücken (2007) (in German)

4. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree
Algebra for XML. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397,
pp. 149–164. Springer, Heidelberg (2002)

5. Korkea-Aho, M.: Context-aware applications survey. Technical report, Department
of Computer Science, Helsinki University of Technology (2000)

6. Lee, K.C.K., Leong, H.V., Si, A.: Semantic query caching in a mobile environment.
ACM SIGMOBILE Mobile Computing and Communications Review 3(2), 28–36
(1999)

7. Magnani, M., Montesi, D.: XML and Relational Data: Towards a Common Model
and Algebra. In: IDEAS 2005: Proceedings of the 9th International Database En-
gineering & Application Symposium, pp. 96–101. IEEE Computer Society Press,
Washington (2005)

8. Mansour, E., Höpfner, H.: An Approach for Detecting Relevant Updates to Cached
Data Using XML and Active Databases. In: 12th International Conference on Ex-
tending Database Technology (EDBT 2009) (2009)

9. Mansour, E., Höpfner, H.: Towards an XML-Based Query and Contextual Informa-
tion Model in Context-Aware Mobile Information Systems. In: The MDM Work-
shop ROSOC-M (2009)

10. Ren, Q., Dunham, M.H., Kumar, V.: Semantic Caching and Query Processing.
IEEE Trans. on Knowl. and Data Eng. 15(1), 192–210 (2003)

	An XML-Based Model for Supporting Context-Aware Query and Cache Management
	Introduction
	Related Work
	Query and Cache Management
	Advanced Context Aware Services
	Query Representation
	Cache Management

	Formalizing Contextual Information
	The Structure
	Examples

	Formalizing Queries
	Fundamental Elements
	User Defined Data Types
	An Example

	Formalizing Manipulation Operations
	The Structure
	Examples

	Realizing the XReAl Model within DBSs
	The XReAl Repository Structure
	Repository Maintenance

	Evaluation
	Update Notification
	Context-Aware Query Processing
	Experimental Results

	Conclusions and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

