MyMIDP and MyMIDP-Client: Direct Accessto MySQL
Databases from Cell Phones

Hagen Hopfner and Jorg Schad and Sebastian Wendland aachB$ansour

International University in Germany
School of Information Technology
Campus 3, D-76646 Bruchsal, Germany

hoepfner@acm.org {Joerg.Schafbebastian.Wendlafssam.Manso}i@i-u.de

1 Introduction and Motivation

Cell phones are no longer merely used to make phone callssanit short or multimedia
messages. They more and more become information systeeméscliRecent develop-
ments in the areas of mobile computing, wireless networklsigiormation systems pro-
vide access to data at almost every place and anytime by thismgind of lightweight
mobile device. But even though mobile clients support the Mobile Edition or the
.NET Micro Framework, most information systems for mobilemts require a middle-
ware that handles data communication. Oracle Lite [OraQ4ad4c, Ora04b] and IBM’s
DB2 Everyplace [IBMO4a, IBM04b] use a middle-ware approfmhsynchronizing data
between client and server. Microsoft's SQL Server CE [Mic@8eds Active Sync and
Sybase Adaptive Server Anywhere [Syb08] either uses SQhd®e and its message ori-
ented replication or MobiLink as a session based approaltthese systems are designed
for handling replicated data [KRTHO7] but not for simpleetit/server data access. In pre-
vious works [CIIHO7, ICHO7] we used a simple web service foalvards queries to the
server and returns the result to the requesting client wegingT TP-connection. However,
this approach is comparable to the middle-ware solutiodsequires additional software
(the web service) that might be an additional point of faludava’'s JDBC provides a
standard way to access databases in Java, but this intésfacissing in Java ME. In
this paper we present our implementation of an MIDP-basea NH driver [HSWMOQ09]
for MySQL similar to JDBC that allows direct communicatiohMIDP applications to
MySQL servers without a middleware. We illustrate the usafgthe driver by our proto-
type MySQL client for MIDP enabled mobile phones.

2 Overall Architecture

Before we started the development we set ourselves fougrnigsials: (1) keep the driver
API as near to the JDBC specification as possible, (2) keepjthe -file size below 32kB

OkResultSet ’?{‘ Statement | 1 Connection [
[}
1

1 4
1 1
ResultSet MysqllO
1 [} 11
* *

Field Buffer

Figure 1: Class Overview

— half the popular 64kB limit for cell phones — to leave enosghce for the application,
(3) keep the implementation code as simple and performagmssible. These goals were
mostly achieved. Our current development version provilzéabase access sufficient for
most applications in just 27kB. (In comparison, the MySQlod@ector JDBC driver has
more than 500kB.) On the other hand we had to cut short on sepeets like parametrized
gueries and meta data usage. Figure 1 shows the basic dgsardiof the driver.

TheBufferclass is responsible for encoding and decoding packet faddgell as for the
conversion between MySQL and Java data types. NigegllO class handles the com-
munication with the database server. THgsqllO class uses twd®uffer instances, one
for sending and one for receiving, to which it has exclusiveeas, ensuring strict task
separation between the classes. Twnnectionclass is very similar to th€onnection
interface of JDBC. It owns an instance MfysqllOand uses it to provide connection spe-
cific methods like opening and closing a connection and cingnitne database. It also
works as factory foStatemenandQueryobjects. TheStatementlass is very similar to
the JDBCStatemeninterface. It provides methods to execute database quangkgetch
the the result. For this it implements the packet sequergie tecessary, but relies on the
instance of theMysqllO class hold by th&Connectionclass factory for doing all packet
processing. Th&ueryclass provides basic functionality for parametrized ceeeriThe
OKResultSets an simple query information storage and is solely usechbystatement
class. Itis not directly available to the application deyer but must be accessed through
methods provided by th8tatementlass. ThdresultSetlass performs the same job as the
JDBC ResultSeinterface, providing exactly the same row-pointer basedss methods.

It uses an array ofield class instances to store and process all column specific thata
fact, theResultSedloes only act as a facade to ffield class, managing the row dimension
of the database result set. THeld class provides column wise storage for database result
sets and meta data. A large number of simple methods proevisa to specific column-
and meta data. It is only used internally by ResultSetThree additional helper classes
provide a number of static methods for common tasks notyrgalit of the driver (like
string operations). Th€onstantglass contains all the necessary constants. Finally, there
is oneSQLExceptiorlass used throughout the driver.

3 UsingMyMIDP

Every MIDP 2.0 compatible device should be able to use theedrvhen the follow-
ing, additional requirements are fulfilled: It must suppmtket connections (optional in
MIDP 2.1). It must support JSR 1¥tneeded for MySQL authentication via SHA-1). It
should have at least one megabyte of free heap memory (diegendthe implementing
application).

Since the driver APl is a very similar to JDBC, a developerifeanwith JDBC will not
have any problems using our driver. And even developers oaatabase APIs will find
our driver easy to use as it always follows four steps: (1 p&ra database connection, (2)
Create and execute a database statement, (3) Processutiseeq4) Close the connec-
tion. Steps two and three can be repeated in case more thajuenemust be executed.
For illustration purposes the following listing shows aghsage example:

import de.iu.db.mysgl.mini.Connection;

import de.iu.db.mysgl.mini.ResultSet;

import de.iu.db.mysgl.mini.Statement;

import de.iu.db.mysgl.mini.exceptions.SQLException;

public class Demo{
public static void main(String[] args)

try {
/I connecting to database 'catsanddogs’ on server tesesetwork.net:3006, user 'test’, pwd 'run’

Connection con :ew Connection("test.somenetwork.net”, 3006, "test”, "rufé¢atsanddogs”);
Il retrieve some data
Statement st = con
.createStatement
("SELECT.name..age..ownec.FROM.dogs");
ResultSet rs = st.executeQuery();
/I loop through the result set
for (; rs.current()< rs.getResultCount(); rs.next@)
I access the data using row and column pointer
System.out.printin("TheDog.” + rs.getAsString(0) + 2("+ rs.getAsInt(1) + ")L.is_.owned.by."
+ rs.getAsString(2));

/I adding some data
long count = st.executeUpdate("INSERINTO._dogs.(name..age,.owner)” + "VALUES_('Angel’,_12, 'Charlie’)");
System.out.printin("Added + count + "_datasetswith_message'+ st.getMessage());
/I end the session
con.close();

} catch (SQLException e)
/I do some error handling
e.printStackTrace();

¥

}
}

Main differencesto JDBC There are a few important usage differences to JDBC we
would like to point out. First, the driver does not use the @D&yle connection URL
but method parameters for simplicity and performance mms&econd, th&tatement
object can be reused thus improving garbage collectiondThiis not possible to execute
multiple statements at the same time as they use the BysglOclass instance and thus
share buffers.

1JSR 177: Security and Trust Services API for J2ME: et p://jcp.org/en/jsr/detail ?id=
177

4 A Prototype I mplementation: MyMIDP-Client

As a prove of concept we implemented a prototype client ($ger€ 2) that utilizes the

MyMIDP driver. After connecting to a MySQL server the cligarbvides query templates.
The user can choose between select, insert, update, artd.dékethese templates only
support typing in queries the client only preinitialize® thuery string with the staring
keyword of the query. The user has to complete the querygstnianually but might also

remove the key word provided by the templates. After sulimgjtthe query to the server,
the result is displayed. Due to the limited size of the digpl@ decided to add a unique
ID to each tuple and to display the first attribute only. THenselecting this ID, the user
can display the tuple completely.

Fanil @@ Fonil @m Fonil AEC B Funl B
MySQL MIDP Client MySQL MIDP Client Quene MySQL MIDP Client
Connection Setup Query type: e (TETD e TEES Query Results
Flease insert the connection ©_ 4 Wendand
informstion. 8“"59“ 2 Hoeptner
e update Hosptner
Cefelete 3

£
o
=
.
8
2

Exit + Ok Back Ok Back Ok Ok

Figure 2: The MyMIDP-client in action

The MyMIDP sources and the MyMIDP-client prototype are GRemhsed and available
athttp://it.i-u.de/dbi s/ WM DP.

References

[CIIHO7] Alexandru Caracas, lulia lon, Mihaela lon, anddéa Hopfner. Towards Java-based Data Caching for Mobile
Information System Clients. In Birgitta Konig-Ries, Fealnehner, Rainer Malaka, and Can Turker, editdi#)S
2007: Mobilitat und mobile Informationssysteme; Prodegd of the 2nd conference of Gl-Fachgruppe MMS
volume P-104 of.NI, pages 97-101, Bonn, Germany, 2007. GI, Kollen Druck+ageGmbH.

[HSWMO09] Hagen Hopfner, Jorg Schad, Sebastian Wendland,Essam Mansour. MyMIDP: An JDBC driver for accessing
MySQL from mobile devices. liProceedings of the 1st International Conference on Advairt®atabases (DB
2009), March 1-6, 2009 - Gosier, Guadeloupe/Fran&EE, 2009. accepted for publication.

[IBM0O4a] IBM Corporation.IBM DB2 Everyplace Application and Development Guide \ér$i.2 August 2004.

[IBMO4b] IBM Corporation.|IBM DB2 Everyplace Sync Server Administration Guide Ver8i@ August 2004.

[ICHO7] lulia lon, Alexandru Caracag, and Hagen HopfridiTrainSchedule: Combining Web Services and Data Caching
on Mobile DevicesDatenbank-Spektrun21:51-53, May 2007.

[KRTHO7] Birgitta Konig-Ries, Can Turker, and Hagen Hier. Informationsnutzung und -verarbeitung mit mobilesr&@en
— Verfugbarkeit und KonsistenDatenbank-Spektrun7(23):45-53, 2007. in German.

[Mic08] Microsoft Corporationht t p: / / nsdn. mi crosoft. com | i brary/,2008.

[Ora04a] Oracle CorporatiorOracle Database Lite, Administration and Deployment Guifig (10.0.0)June 2004.

[Ora04b] Oracle CorporatiorOracle Database Lite, Developer’s Guide 10g (10.0Jane 2004.

[Ora04c] Oracle CorporatiorOracle Database Lite, SQL Reference 10g (10,Q0he 2004.

[Syb08] Sybase Incht t p: / / ww. sybase. conl i anywher e/ pr oduct s, 2008.

