
MyMIDP and MyMIDP-Client: Direct Access to MySQL
Databases from Cell Phones

Hagen Höpfner and Jörg Schad and Sebastian Wendland and Essam Mansour

International University in Germany
School of Information Technology

Campus 3, D-76646 Bruchsal, Germany

hoepfner@acm.org {Joerg.Schad|Sebastian.Wendland|Essam.Mansour}@i-u.de

1 Introduction and Motivation

Cell phones are no longer merely used to make phone calls or tosend short or multimedia
messages. They more and more become information systems clients. Recent develop-
ments in the areas of mobile computing, wireless networks and information systems pro-
vide access to data at almost every place and anytime by usingthis kind of lightweight
mobile device. But even though mobile clients support the Java Mobile Edition or the
.NET Micro Framework, most information systems for mobile clients require a middle-
ware that handles data communication. Oracle Lite [Ora04a,Ora04c, Ora04b] and IBM’s
DB2 Everyplace [IBM04a, IBM04b] use a middle-ware approachfor synchronizing data
between client and server. Microsoft’s SQL Server CE [Mic08] needs Active Sync and
Sybase Adaptive Server Anywhere [Syb08] either uses SQL-Remote and its message ori-
ented replication or MobiLink as a session based approach. All these systems are designed
for handling replicated data [KRTH07] but not for simple client/server data access. In pre-
vious works [CIIH07, ICH07] we used a simple web service thatforwards queries to the
server and returns the result to the requesting client usingan HTTP-connection. However,
this approach is comparable to the middle-ware solutions and requires additional software
(the web service) that might be an additional point of failure. Java’s JDBC provides a
standard way to access databases in Java, but this interfaceis missing in Java ME. In
this paper we present our implementation of an MIDP-based Java ME driver [HSWM09]
for MySQL similar to JDBC that allows direct communication of MIDP applications to
MySQL servers without a middleware. We illustrate the usageof the driver by our proto-
type MySQL client for MIDP enabled mobile phones.

2 Overall Architecture

Before we started the development we set ourselves four design goals: (1) keep the driver
API as near to the JDBC specification as possible, (2) keep the.jar-file size below 32kB

OkResultSet Statement Connection Query

ResultSet

Field Buffer

MysqlIO

1

1

1 1

1

1
111

* *

Figure 1: Class Overview

– half the popular 64kB limit for cell phones – to leave enoughspace for the application,
(3) keep the implementation code as simple and performant aspossible. These goals were
mostly achieved. Our current development version providesdatabase access sufficient for
most applications in just 27kB. (In comparison, the MySQL JConnector JDBC driver has
more than 500kB.) On the other hand we had to cut short on some aspects like parametrized
queries and meta data usage. Figure 1 shows the basic class diagram of the driver.

TheBufferclass is responsible for encoding and decoding packet fieldsas well as for the
conversion between MySQL and Java data types. TheMysqlIO class handles the com-
munication with the database server. TheMysqlIO class uses twoBuffer instances, one
for sending and one for receiving, to which it has exclusive access, ensuring strict task
separation between the classes. TheConnectionclass is very similar to theConnection
interface of JDBC. It owns an instance ofMysqlIOand uses it to provide connection spe-
cific methods like opening and closing a connection and changing the database. It also
works as factory forStatementandQueryobjects. TheStatementclass is very similar to
the JDBCStatementinterface. It provides methods to execute database queriesand fetch
the the result. For this it implements the packet sequence logic necessary, but relies on the
instance of theMysqlIO class hold by theConnectionclass factory for doing all packet
processing. TheQueryclass provides basic functionality for parametrized queries. The
OKResultSetis an simple query information storage and is solely used by theStatement
class. It is not directly available to the application developer but must be accessed through
methods provided by theStatementclass. TheResultSetclass performs the same job as the
JDBCResultSetinterface, providing exactly the same row-pointer based access methods.
It uses an array ofField class instances to store and process all column specific data. In
fact, theResultSetdoes only act as a facade to theField class, managing the row dimension
of the database result set. TheField class provides column wise storage for database result
sets and meta data. A large number of simple methods provide access to specific column-
and meta data. It is only used internally by theResultSet. Three additional helper classes
provide a number of static methods for common tasks not really part of the driver (like
string operations). TheConstantsclass contains all the necessary constants. Finally, there
is oneSQLExceptionclass used throughout the driver.

3 Using MyMIDP

Every MIDP 2.0 compatible device should be able to use the driver when the follow-
ing, additional requirements are fulfilled: It must supportsocket connections (optional in
MIDP 2.1). It must support JSR 1771 (needed for MySQL authentication via SHA-1). It
should have at least one megabyte of free heap memory (depending on the implementing
application).

Since the driver API is a very similar to JDBC, a developer familiar with JDBC will not
have any problems using our driver. And even developers new to database APIs will find
our driver easy to use as it always follows four steps: (1) Create a database connection, (2)
Create and execute a database statement, (3) Process the result set, (4) Close the connec-
tion. Steps two and three can be repeated in case more than onequery must be executed.
For illustration purposes the following listing shows a short usage example:

import de.iu.db.mysql.mini.Connection;
import de.iu.db.mysql.mini.ResultSet;
import de.iu.db.mysql.mini.Statement;
import de.iu.db.mysql.mini.exceptions.SQLException;

public class Demo{

public static void main(String[] args){

try {
// connecting to database ’catsanddogs’ on server test.somenetwork.net:3006, user ’test’, pwd ’run’
Connection con =new Connection(”test.somenetwork.net”, 3006, ”test”, ”run”, ”catsanddogs”);
// retrieve some data
Statement st = con

.createStatement
(”SELECT name,age, owner FROM dogs”);

ResultSet rs = st.executeQuery();
// loop through the result set
for (; rs.current()< rs.getResultCount(); rs.next()){

// access the data using row and column pointer
System.out.println(”TheDog ” + rs.getAsString(0) + ”(”+ rs.getAsInt(1) + ”) is owned by ”

+ rs.getAsString(2));
}
// adding some data
long count = st.executeUpdate(”INSERTINTO dogs (name,age, owner)” + ”VALUES (’Angel’, 12, ’Charlie’)”);
System.out.println(”Added” + count + ” datasetswith message:”+ st.getMessage());
// end the session
con.close();

} catch (SQLException e){
// do some error handling
e.printStackTrace();

}
}

}

Main differences to JDBC There are a few important usage differences to JDBC we
would like to point out. First, the driver does not use the JDBC style connection URL
but method parameters for simplicity and performance reasons. Second, theStatement
object can be reused thus improving garbage collection. Third, it is not possible to execute
multiple statements at the same time as they use the sameMysqlIOclass instance and thus
share buffers.

1JSR 177: Security and Trust Services API for J2METM : http://jcp.org/en/jsr/detail?id=
177

4 A Prototype Implementation: MyMIDP-Client

As a prove of concept we implemented a prototype client (see Figure 2) that utilizes the
MyMIDP driver. After connecting to a MySQL server the clientprovides query templates.
The user can choose between select, insert, update, and delete. As these templates only
support typing in queries the client only preinitializes the query string with the staring
keyword of the query. The user has to complete the query string manually but might also
remove the key word provided by the templates. After submitting the query to the server,
the result is displayed. Due to the limited size of the display we decided to add a unique
ID to each tuple and to display the first attribute only. Then,by selecting this ID, the user
can display the tuple completely.

Figure 2: The MyMIDP-client in action

The MyMIDP sources and the MyMIDP-client prototype are GPL licensed and available
athttp://it.i-u.de/dbis/MyMIDP.

References
[CIIH07] Alexandru Caracaş, Iulia Ion, Mihaela Ion, and Hagen Höpfner. Towards Java-based Data Caching for Mobile

Information System Clients. In Birgitta König-Ries, Franz Lehner, Rainer Malaka, and Can Türker, editors,MMS
2007: Mobilität und mobile Informationssysteme; Proceedings of the 2nd conference of GI-Fachgruppe MMS,
volume P-104 ofLNI, pages 97–101, Bonn, Germany, 2007. GI, Köllen Druck+Verlag GmbH.

[HSWM09] Hagen Höpfner, Jörg Schad, Sebastian Wendland,and Essam Mansour. MyMIDP: An JDBC driver for accessing
MySQL from mobile devices. InProceedings of the 1st International Conference on Advances in Databases (DB
2009), March 1-6, 2009 - Gosier, Guadeloupe/France. IEEE, 2009. accepted for publication.

[IBM04a] IBM Corporation.IBM DB2 Everyplace Application and Development Guide Version 8.2, August 2004.
[IBM04b] IBM Corporation. IBM DB2 Everyplace Sync Server Administration Guide Version 8.2, August 2004.
[ICH07] Iulia Ion, Alexandru Caracaş, and Hagen Höpfner.MTrainSchedule: Combining Web Services and Data Caching

on Mobile Devices.Datenbank-Spektrum, 21:51–53, May 2007.
[KRTH07] Birgitta König-Ries, Can Türker, and Hagen Höpfner. Informationsnutzung und -verarbeitung mit mobilen Geräten

– Verfügbarkeit und Konsistenz.Datenbank-Spektrum, 7(23):45–53, 2007. in German.
[Mic08] Microsoft Corporation.http://msdn.microsoft.com/library/, 2008.
[Ora04a] Oracle Corporation.Oracle Database Lite, Administration and Deployment Guide10g (10.0.0), June 2004.
[Ora04b] Oracle Corporation.Oracle Database Lite, Developer’s Guide 10g (10.0.0), June 2004.
[Ora04c] Oracle Corporation.Oracle Database Lite, SQL Reference 10g (10.0.0), June 2004.
[Syb08] Sybase Inc.http://www.sybase.com/ianywhere/products, 2008.

