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ABSTRACT
Motifs are frequent patterns used to identify biological func-
tionality in genomic sequences, periodicity in time series, or
user trends in web logs. In contrast to a lot of existing work
that focuses on collections of many short sequences, modern
applications require mining of motifs in one very long se-
quence (i.e., in the order of several gigabytes). For this case,
there exist statistical approaches that are fast but inaccu-
rate; or combinatorial methods that are sound and complete.
Unfortunately, existing combinatorial methods are serial and
very slow. Consequently, they are limited to very short se-
quences (i.e., a few megabytes), small alphabets (typically 4
symbols for DNA sequences), and restricted types of motifs.

This paper presents ACME, a combinatorial method for
extracting motifs from a single very long sequence. ACME
arranges the search space in contiguous blocks that take ad-
vantage of the cache hierarchy in modern architectures, and
achieves almost an order of magnitude performance gain in
serial execution. It also decomposes the search space in a
smart way that allows scalability to thousands of processors
with more than 90% speedup. ACME is the only method
that: (i) scales to gigabyte-long sequences; (ii) handles large
alphabets; (iii) supports interesting types of motifs with
minimal additional cost; and (iv) is optimized for a variety
of architectures such as multi-core systems, clusters in the
cloud, and supercomputers. ACME reduces the extraction
time for an exact-length query from 4 hours to 7 minutes on
a typical workstation; handles 3 orders of magnitude longer
sequences; and scales up to 16,384 cores on a supercomputer.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems; I.5.4 [Pattern Recog-
nition]: Applications—Text processing
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Figure 1: Example sequence S over DNA alpha-
bet Σ = {A, C, G, T}. Occurrences of motif candidate
m = GGTGC are indicated by boxes, assuming distance
threshold d = 1. X refers to a mismatch between m
and the occurrence. Occurrences may overlap.

1. INTRODUCTION
Motifs are patterns that appear frequently in sequences.

Although there exist numerous methods [17] to extract mo-
tifs from a dataset of many short sequences, this paper deals
with the more computationally demanding case of a single
very long sequence. Many modern applications require motif
extraction from one long sequence. Examples include human
genome analysis in bioinformatics [21]; stock market predic-
tion in time series [16]; and web log analytics [18]. Such data
contain errors, noise, and non-linear mappings [22]. Hence,
it is necessary to support approximate matching in motif
extraction, meaning that occurrences of a motif may differ
slightly from the motif according to a distance function.

Motif extraction approaches are classified into two cat-
egories: statistical and combinatorial [5]. Statistical ap-
proaches rely on sampling or calculating the probability of
motif existence. Such approaches trade accuracy for speed
[13]; they may miss some motifs (i.e., false negatives), or
return motifs that do not exist (i.e., false positives). Com-
binatorial approaches [1, 9, 10] verify all combinations of
symbols and return all motifs that satisfy the required dis-
tance threshold (i.e., no false positives or negatives). This
paper focuses on combinatorial motif extraction approaches.

Example. Query q looks for motifs that occur at least σ = 5
times with a distance of at most d = 1 between a motif and
an occurrence. Let m = GGTGC be a candidate motif. Fig-
ure 1 shows sub-sequences of S that match m. The distance
of each occurrence (e.g., GGTGG) from m is at most 1 (i.e., G
instead of C at positions 5 and 8). An occurrence is denoted
as a pair of start and end positions in S. The set of occur-
rences form is L(m) = {(1, 5), (4, 8), (7, 11), (12, 16), (18, 22)}
and the frequency of m is |L(m)| = 5.

Compared to the well-studied frequent itemset mining
problem in transactional data, motif mining in sequences
has three differences: (i) Order is important. For example,
AG may be frequent even if GA is infrequent. (ii) Motif occur-
rences may overlap. For example, in sequence AAA, the oc-

549



currences set of motif AA is L(AA) = {(0, 1), (1, 2)}. (iii) Be-
cause of the distance threshold, a valid motif may not appear
as a subsequence within the input sequence. For example,
in sequence AGAG, with frequency and distance thresholds
σ = 2 and d = 1; TG is a motif. Because of these differences,
solutions for frequent itemset mining, such as the FP-tree
[12], cannot be utilized. Instead, all combinations of sym-
bols from the alphabet Σ must be checked. Assuming that
the length of the longest valid motif is lmax, the search space
size is O(|Σ|lmax).

Because of the exponential increase in runtime, existing
methods attempt to limit the search space by restricting
the motif types that can be identified [13, 15]. FLAME [9],
for instance, searches for motifs of a specific length only.
Despite this restriction, the largest reported input sequence
was only 1.3MB. Another way to limit the search space is by
limiting the distance threshold. For example, MADMX [10]
introduced a so called density measure and VARUN [1] uti-
lized saturation constraints. Both are based on the idea of
decreasing the distance threshold for shorter motifs in order
to increase the probability of early pruning. Nevertheless,
the largest reported input did not exceed 3.1MB. It must be
noted that MADMX and VARUN support only 4-symbol
DNA sequences. With larger alphabets (e.g., English alpha-
bet), they would handle smaller sequences in practice, due
to the expanded search space.

All aforementioned methods are serial. Supporting larger
inputs demands parallel processing. Unfortunately, paral-
lelization of the motif extraction process is not easy. There
are two options: (i) Partition the input sequence, which
requires an expensive merging step since motif candidates
must be validated against the entire input sequence. The
required communication grows quadratically with the num-
ber of processors and limits scalability. (ii) Partition the
search space and replicate the entire input sequence. This
minimizes communication but affects load balance. Because
pruning can happen at different depths of the search space
that cannot be predicted beforehand. It may happen that
only few processors do the majority of the work, while other
processors stay idle. To the best of our knowledge1, there is
only one parallel approach, called PSmile [3], that employs
heuristic partitioning but scales to only 4 processors. The
largest reported input using PSmile is less than 0.25MB.

In this paper, we present ACME, a parallel combinato-
rial method for extracting motifs from a single very long se-
quence. ACME handles gigabyte-long sequences, such as the
entire human genome (i.e., 2.6GB). Similar to some existing
methods, ACME uses a suffix tree [11] to keep occurrence
counts for all suffixes in the input sequence S. The novelty
of ACME lies in: (i) the traversal order of the search space,
and (ii) the order of accessing information in the suffix tree.
These are arranged in a way that they exhibit spatial and
temporal locality. This allows us to store the required in-
formation in contiguous memory blocks that are kept in the
CPU caches, and minimize cache misses in modern proces-
sor architectures. In addition, the cached information fa-
cilitates fast backtracking, which in turn allows the iden-
tification of right-supermaximal motifs (see Section 2.1 for
definition) with minimal overhead. By being cache-efficient,
ACME achieves almost an order of magnitude performance
improvement for serial execution.

1There exist several parallel approaches [4, 6, 7, 14] for the
much simpler case of a collection of many short sequences.

ACME also supports large scale parallelism. It partitions
the search space to a large number (i.e., tens to hundreds of
thousands) of independent tasks. A master-worker approach
is employed to keep all processors busy, achieving good load
balance. However, fine-grained partitioning may miss oppor-
tunities for early pruning, resulting in more work for many
processors. The novelty of ACME lies in the development of
a set of heuristics that achieve good tradeoff between load
balancing and early pruning. We tested ACME in a variety
of architectures, including multi-core shared memory work-
stations, shared-nothing Linux clusters, and a large super-
computer with 16,384 processors. ACME achieves almost
perfect speedup (more than 90%) in most cases.

In summary, our contributions are:

• We develop a cache-efficient search space traversal tech-
nique for motif extraction that improves the serial ex-
ecution time by almost an order of magnitude.

• We propose heuristics to decompose the motif extrac-
tion process to fine-grained tasks, allowing for the ef-
ficient utilization of thousands of processors. We scale
to 16,384 processors on an IBM BlueGene/P super-
computer and solve in 18 minutes a query that needs
more than 10 days on a high-end multicore machine.

• Our method scales to large alphabets (e.g., English
alphabet for the Wikipedia dataset) and supports in-
teresting motif types (e.g., right-supermaximal motifs)
with minimal overhead.

• We conduct a comprehensive evaluation with large real
datasets. ACME handles 3 orders of magnitude longer
sequences than our competitors on the same machine.

The rest of this paper is organized as follows. Section 2
presents the required background. Related work is discussed
in Section 3. We introduce our cache-efficient method and
parallel approach in Sections 4 and 5. Section 6 presents the
experimental analysis and Section 7 concludes the paper.

2. BACKGROUND
This section introduces necessary definitions and defines

the problem. The problem search space and the index used
in the solution are then discussed.

2.1 Motifs
A sequence S over an alphabet Σ is an ordered and finite

list of symbols from Σ. S[i] is the ith symbol in S, where
0 ≤ i < |S|. A subsequence of S that starts at position i
and ends at position j is denoted by S[i, j] or simply by its
position pair (i, j). For example, (7,11) represents GGTGC in
Figure 1. Let D be a function that measures similarity be-
tween two sequences. Following the previous work [8, 9], in
this paper we assume D is the Hamming distance (i.e., num-
ber of mismatches). A motif candidate m is a combination
of symbols from Σ. A subsequence S[i, j] is an occurrence
of m in S, if the distance between S[i, j] and m is at most
d, where d is a user-defined distance threshold. The set of
all occurrences of m in S is denoted by L(m). Formally:
L(m) = {(i, j)|D(S[i, j],m) ≤ d}.

Definition 1 (Motif). Let S be a sequence, σ ≥ 2 be
a frequency threshold, and d ≥ 0 be a distance threshold. A
candidate m is a motif if and only if there are at least σ
occurrences of m in S. Formally: |L(m)| ≥ σ.
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Figure 2: Two levels of the combinatorial search
space trie for DNA motifs, alphabet Σ = {A, C, G, T}.

Definition 2 (Maximal motif). A motif m is max-
imal if and only if it cannot be extended to the right nor
to the left without changing its occurrences set. Formally,
L(m) 6= L(αm) 6= L(mβ), where α and β ∈ Σ.

A maximal motif must be right and left maximal [8]. A
motif m is right maximal if L(mβ) has less occurrences or
more mismatches than L(m). Similarly, a motif m is left
maximal if extending m to the left causes a loss in occur-
rences or introduces new mismatches. There is excessive
overlapping among maximal motifs. Users are typically in-
terested in longer motifs [8], such as the right-supermaximal
ones, denoted by rs-motifs in the rest of this paper.

Definition 3 (Right-Supermaximal Motif). Let M
be the set of maximal motifs from Definition 2 and let m̂ ∈
M . m̂ is a rs-motif, if m̂ is not a prefix of any other mo-
tif in M . We call Mrs the set of all rs-motifs. Formally:
Mrs = {m̂|m̂ ∈M, m̂α /∈M,α ∈ Σ}.

The number of possible motif candidates for a certain σ

value is
∑|S|−σ+1
i=1 |Σ|i, where |Σ| is the alphabet size. To re-

strict the number of motif candidates, previous works have
imposed minimum (lmin) and maximum (lmax) length con-
straints.

Problem 1. Given sequence S, frequency threshold σ ≥
2, distance threshold d ≥ 0, minimum length lmin ≥ 2, and
maximum length lmax ≥ lmin; find all rs-motifs.

The most interesting case is when lmax = ∞. Obviously,
this is also the most computationally expensive case since
the length cannot be used as an upper bound.

2.2 Trie-based Search Space and Suffix Trees
The search space of a motif extraction query is the set

of motif candidates for that query. The size of such search
space is astronomical even for a short input sequence and
a small alphabet. A combinatorial trie (see Figure 2) is
used as a compact representation of the search space. Every
path label formed by traversing the trie from the root to a
node is a motif candidate. Finding the occurrences of each
motif candidate and verifying maximality conditions require
a large number of expensive searches in the input sequence
S. To minimize this cost, a suffix tree index is typically used.
A suffix trees is a full-text index where the paths from the
root to the leaves correspond to the suffixes of the indexed
sequence [11]. It is built in linear time and space as long as
the sequence and the tree fit in memory [20].

The properties of the suffix tree facilitate the verification
of right and left maximality as discussed by Federico and
Pisanti [8]. For the sake of completeness, we highlight the
following essential properties. (i) A suffix tree node is left-
diverse if at least two of its descendant leaves have different
left symbols in S. Based on the suffix tree, a motif m is left

Figure 3: Example sequence over Σ = {A, C, G, T} and
its suffix tree. Suffix tree nodes are annotated with
the frequency of their path labels and are numbered
for referencing in the paper.

maximal if one of its occurrences is a left-diverse suffix tree
node. (ii) The labels of the children of an internal suffix tree
node start with different symbols. Hence, if a motif has an
occurrence that consumes the complete label of an internal
node, then it is right maximal.

We annotate the suffix tree by traversing it once and stor-
ing in every node whether it is left-diverse or not and the
number of leaves reachable through it. This number is the
frequency of a node’s path label. For example, the path
label for node 1.2 in Figure 3 is TGC and it is not a left-
diverse node as TGC is always preceded by G in S. Node
1.2 is annotated with f = 2 because TGC appears in S at
{(9, 11), (20, 22)}. For simplicity, Figure 3 does not show
the left-diversity annotation. In case of exact motifs, where
d = 0, the search space is reduced to the suffix tree [2]. For
the general case, where d > 0, occurrences of a candidate
motif are found at different suffix tree nodes. The frequency
of the motif is calculated by summing the annotations from
all these nodes.

Example. Let us start a depth first traversal of the search
space trie in Figure 2 to extract motifs from the example
sequence and its suffix tree in Figure 3. Assume d = 1 and
σ = 10. The trie traversal starts at node A in the first level.
By traversing the suffix tree, we find that the first symbol
from every branch starting at the root is an occurrence of
A within distance 1. Therefore, the occurrences set contains
the following suffix tree nodes: L(A) = {1, 2, 3, 4} and a to-
tal frequency of 7 + 13 + 2 + 1 = 23. Search space traversal
continues to the first child of A, representing the motif can-
didate AA. The occurrences set of A is used to create AA’s.
The label of suffix tree node 1 is TG. It already has distance
1 from A in the first level. Extending the occurrence by
one symbol introduces another mismatch for AA so it is dis-
carded. To extend the label for the second occurrence we
need to check all branches from suffix tree node 2. The first
three children 2.1 to 2.3 of node 2 are pruned for exceeding
the allowed distance. Node 2.4 is added to the occurrences
set of AA since its path label is GA, which has distance 1
from AA. The rest of the occurrences of A are extended and
validated in the same manner. The occurrences set of AA is
L(AA) = {2.4, 4} with a total frequency of 1 + 1 = 2. AA

is not frequent enough and the search space is pruned by
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Table 1: Comparison of combinatorial motif extractors
Supported motif types

Index Exact-length Maximal RS-Motif Largest reported input Parallel
FLAME [9] Suffix Tree Yes No No 1.3 MB No
VARUN [1] N/A No Yes No 3.1 MB No
MADMX [10] Suffix Tree No Yes No 0.5 MB No
PSmile [3] Suffix Tree Yes No No 0.2 MB Yes
ACME [our method] Suffix Tree Yes Yes Yes 2.6 GB Yes

backtracking to node A in Figure 2. Then, AC is processed
in the same way.

3. RELATED WORK
This section presents the most recent combinatorial meth-

ods for extracting motifs from a single sequence. Table 1
summarizes these methods. Motif extraction is a highly
repetitive process making it directly affected by cache align-
ment and memory access patterns. For a motif extractor
to be scalable, it needs to utilize the memory hierarchy ef-
ficiently and run in parallel. Existing methods do not deal
with these issues. Therefore, they are limited to sequences
in the order of a few megabytes [15].

The complexity of motif extraction grows exponentially
with the motif length. Intuitively, extracting maximal mo-
tifs and rs-motifs is more complex than extracting exact-
length motifs. FLAME [9] supports only exact-length mo-
tifs. To explore a sequence, users need to run multiple
exact-length queries. VARUN [1] and MADMX [10] sup-
port maximal motifs, which cover all motif lengths for the
same query thresholds. To limit the search space, VARUN
and MADMX define the distance threshold as a ratio with
respect to motif candidate length. Both techniques return
highly redundant results since they do not support rs-motifs.
ACME efficiently extracts exact-length motifs, maximal mo-
tifs, and rs-motifs from a long sequence.

Parallelizing motif extraction attracted a lot of research
efforts, especially in bioinformatics [3, 4, 6, 7, 14]. None of
these approaches extract accurate motifs from a single se-
quence of gigabyte size. Moreover, most of these approaches
are statistical. Challa and Thulasiraman in [4] handled
a dataset of 15,000 protein sequences with the longest se-
quence being 577 symbols only. However, this method did
not manage to scale to more than 64 cores. Dasari et al. in
[6] extracted common motifs from 20 sequences of a total size
of 12KB and scaled to 16 cores. This work was extended in
[7] to support GPUs and scaled to 4 GPU devices using the
same dataset. Liu, Schmidt, and Maskell in [14] processed
a 1MB dataset on 8 GPUs.

The only parallel and combinatorial method for extract-
ing motifs from a single sequence is PSmile [3]. This method
attempted to parallelize the motif extraction process by de-
veloping a heuristic partitioning approach. The workload of
the produced partitions is not equal since they are pruned
at different rates. PSmile suffers from highly imbalanced
workload and parallel overhead. Moreover, PSmile does not
provide any guarantees for the size of the produced par-
titions [19] and reported scaling to 4 compute nodes only.
ACME overcomes this problem by decomposing the search
space into fine-grained sub-tries that are dynamically as-
signed based on their actual workload.

4. CACHE AWARE MOTIF EXTRACTION
ACME decomposes the search space trie into sub-tries of

arbitrary sizes. Each sub-trie is maintained and validated in-
dependently using a cache-aware mechanism, called CAST2,
presented in this section. Section 5 presents our decomposi-
tion and load balancing technique.

4.1 Spatial and Temporal Memory Locality
Recent motif extraction methods realize the trie search

space as a set of nodes, where each node has a label of one
character and pointers to its parent and children. Addition-
ally, each node contains its occurrences set. These nodes
are dynamically allocated and deallocated once they are not
needed. The maximum number of trie nodes to be created
and then deleted from main memory is

∑lmax
i=1 |Σ|

i. For ex-
ample, when lmax=15 and |Σ|=4, the maximum number of
nodes is 1,431,655,764. Moreover, These nodes are scattered
in main memory and visited back and forth to traverse all
motif candidates. Consequently, these methods suffer dra-
matically from cache misses, plus the overhead of memory
allocation and deallocation.

A branch of trie nodes represents a motif candidate (se-
quence of symbols). These symbols are conceptually ad-
jacent with preserved order; allowing for spatial locality.
Moreover, maintaining occurrences sets is a pipelined pro-
cess, i.e., the occurrences set of AA is used to build the oc-
currences set of AAA. That could lead to temporal locality.
The existing approaches overlooked these spatial and tem-
poral locality properties in the motif extraction process and
the allocation/deallocation overhead.

We propose contiguous data structures to realize the sub-
tries and occurrences sets. CAST models the sub-trie search
space as a set of variable depth branches represented by their
path labels from the root to a leaf. We decouple the sub-
trie branches from the occurrences sets to produce smaller
entities. Hence, we can benefit from the spatial locality of
the branches and the temporal locality of occurrences sets.

For spatial locality, CAST utilizes an array of symbols to
recover all branches sharing the same prefix. The size of this
array is proportional to the length of the longest motif to
be extracted. For instance, a motif of 1K symbols requires
roughly a 9KB array. In practice, motifs are shorter. We
have experiments with human genome, protein, and English
sequences of gigabyte sizes, where the longest motif lengths
are 28, 95 and 42 symbols respectively. Moreover, the oc-
currences set is also realized as an array. With current CPU
cache sizes, not only a sub-trie branch will fit in the cache
but most probably its occurrences array, too.

For temporal locality, once we maintain the occurrences
array L(vi) of branch node vi, we expand each occurrence to
create L(vi+1). The upper limit U of the total frequency of

2CAST stands for cache aware search space traversal model
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Figure 4: Snapshots of CAST processing for σ=12,
lmin=lmax=5, d=2 over the sequence in Figure 3. Pre-
fix TG is extended one symbol at a time to maintain
TGTGC and TGTGG branches. A branch is traversed
from ancestor to descendant by moving from left
to right. CAST array (branch) and the occurrences
array of the deepest descendant are easily cached,
since both fit into small contiguous memory blocks.

L(vi+1) is the total frequency of L(vi). Our method decre-
ments U by the frequency of discarded elements. Therefore,
we can stop as soon as U < σ, where σ is the frequency
threshold. Hence, CAST achieves high cache efficiency for
the traversal and validation processes. Moreover, CAST
does not traverse the suffix tree from root, since it keeps
a direct pointer to required nodes in occurrences arrays.

4.2 The CAST Algorithm
The CAST algorithm for extracting motifs is illustrated in

Algorithm 1. CAST: (i) initializes the sub-trie prefix; then
(ii) extends the prefix as long as it leads to valid motif can-
didates; otherwise (iii) prunes the extension. A query with
σ = 12, lmin = lmax = 5 and d = 2 is used to demonstrate
Algorithm 1 against sequence S, which is shown in Figure 3.

Algorithm 1 denotes the sub-trie branch array as branch.
An element branch[i] contains a symbol c, an integer F , and
a pointer, as shown in Figure 4. Each sub-trie has a prefix
p that is extended to recover all motif candidates sharing
p. branch[i] represents the motif candidate mi=pc1. . .ci,
where ci is a symbol from the ith level in the sub-trie (see
Figure 2). Fi is the total frequency of mi and the pointer
refers to L(mi). Each occurrence in L(mi) is a pair 〈T,D〉,
where T is a pointer to a suffix tree node whose path la-
bel matches the motif candidate mi with D mismatches.
branch[0] represents the fixed-length prefix of the sub-trie.
F0 is a summation of the frequency annotation from each
suffix tree node in L(p).

4.2.1 Prefix Initialization
Algorithm 1 starts by creating the occurrences array of the

given fixed-length prefix before recovering motif candidates.
CAST commences the occurrences array maintenance for a
prefix by fetching all suffix tree nodes at depth one. The
maximum size of the occurrences array at this step is |Σ|.
The distance is maintained for the first symbol of the prefix.
Then, the nodes whose distances are less than or equal to
d are navigated to incrementally maintain the entire prefix.

Input: lmin, lmax, prefix p
Output: Valid motifs with prefix p

1 Let branch be an array of size lmax − |p|+ 1
2 branch[0].L← getOccurrences(p)
3 branch[0].F ← getTotalFreq(branch[0].L)
4 i← 1
5 next← DepthFirstTraverse(i)

6 While next 6= END do
7 branch[i].C ← next
8 branch[i].F ← branch[i− 1].F
9 foreach occurrence in branch[i− 1].L do

10 if occurrence is a full suffix tree path label then
// check child nodes in suffix tree

11 foreach child of occurrence.T do
12 if first symbol in child label 6= next then
13 child.D = occurrence.D + 1
14 if child.D > d then
15 Discard(child)
16 if branch[i].F < σ then
17 Prune(branch[i])

18 else
19 add child to branch[i].L

20 else
// extend within label in suffix tree

21 if next symbol in occurrence.T label 6= next
then

22 increment occurrence.D
23 if occurrence.D > d then
24 Discard(occurrence)
25 if branch[i].F < f then
26 Prune(branch[i])

27 else
28 add occurrence to branch[i].L

29 if isValid(branch[i]) then Output(branch[i])
30 increment i
31 next← DepthFirstTraverse(i)

Algorithm 1: CAST Motifs Extraction

The number of phases to maintain the occurrences array of
prefix p is at most |p|.

For example, the sub-trie whose prefix is TG is initialized
by CAST in two phases using the suffix tree shown in Fig-
ure 3. Figure 4(a) shows the final set of occurrences L(TG)
in S. The first element in L(TG) is 〈1, 0〉 because the path
label of suffix tree node 1 is TG with no mismatches from
our prefix. The second element in L(TG) is 〈2.1, 1〉 because
the first two symbols from the path label of suffix tree node
2.1 are GG with one mismatch from our prefix. The to-
tal frequency of TG at branch[0] is the frequency annota-
tions from the suffix tree nodes in L(TG), in the same order,
7+5+5+2+1+1+1=22.

4.2.2 Extension, Validation and Pruning
Since TG is frequent enough, it is extended by traversing

its search space sub-trie. The depth-first traversal of the
sub-trie starts at line 5 in Algorithm 1 to extend branch[0].
The extension process considers all symbols of Σ at each
level in a depth-first fashion. At level i, DepthFirstTraverse

returns ci to extend branch[i−1]. Figure 4(b) demonstrates
the extension of branch[0] with a T then a G.

The maintenance of occurrences set L is a pipelined func-
tion, where L(branch[i+1]) is constructed from L(branch[i]).
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This process is done in the foreach loop starting at line 9 of
Algorithm 1. For example, L(TGT) is created by navigating
each element in L(TG). The first element of L(TG) adds suf-
fix tree nodes 1.1, 1.2, and 1.3 to L(TGT) with distance 1
since their labels do not start with T. The second element of
L(TG) is added to L(TGT) since its label was not fully con-
sumed. In node 2.2, the next symbol of its label introduces
the third mismatch. Thus, the third element of L(TG) is dis-
carded. The rest of L(TG) is processed in the same way. The
total frequency at branch[1] drops to 14. Similarly, L(TGTG),
L(TGTGC) and L(TGTGG) are created.

A node at branch[i] can be skipped by moving back to
its parent at branch[i − 1], which is physically adjacent.
Therefore, our pruning process has good spatial locality,
where backtrack means move to the left. For example in
Figure 4(c), the total frequency of TGTGC drops below the
frequency threshold σ=10 after discarding node 1.1 of fre-
quency 4 from L(TGTG), i.e. 12 − 4 < σ. Since TGTGC has a
frequency less than σ, we do not need to check the rest of
the occurrences and the branch is pruned. The if statement
at line 16 of Algorithm 1 deals with such cases.

After pruning TGTGC, CAST backtracks to branch[2] which
will be extended now using G. All occurrences from branch[2]
are also valid for TGTGG at branch[3] with no change in total
frequency. The if statement at line 29 of Algorithm 1 re-
turns true since the branch represents a valid motif of length
5 and the function Output is called. The next call to Depth-

FirstTraverse will find that i > lmax so it will decrement i
until the level where an extension in the sub-trie is possible
or the sub-trie is exhausted.

ACME supports exact-length motifs, maximal motifs, and
rs-motifs. Function IsValid in line 29 determines whether
a branch represents a valid motif or not as discussed in
Section 2. For exact-length motifs, only branches of that
length are valid. For maximal motifs IsValid returns false
if (i) branch[i] could be extended without changing its oc-
currences list (i.e., not right maximal) or (ii) none of its
occurrences is a left-diverse node (i.e., not left maximal).
For rs-motifs, IsValid returns false as long as a maximal
motif is frequent and can be extended.

5. PARALLEL MOTIF EXTRACTION
This section presents our efficient parallel tree traversal

method (FAST3), which partitions horizontally the search
space and achieves scalability to thousands of compute nodes.
A high degree of concurrency is achieved with minimum
communication overhead and a balanced workload across
compute nodes.

The key sources of parallel overhead are: (i) contention for
the underlying shared resources; (ii) communication over-
head; (iii) imbalanced workload leading to lower utilization
of available resources; and (iv) redundant and useless work
due to lack of appropriate global knowledge. It is challeng-
ing to completely avoid these conflicting overhead sources
in parallel motif extraction in order to scale to thousands of
compute nodes.

5.1 Horizontal Search Space Partitioning
A large trie can be split into numerous sub-tries, where

each sub-trie is traversed independently. Parallelizing the
trie traversal is easy in this sense. However, the motif ex-

3FAST stands for fine-grained adaptive sub-tasks

Figure 5: A DNA combinatorial trie partitioned at
depth one into a fixed-depth sub-trie leading to four
variable-depth sub-tries, which are traversed simul-
taneously by two compute nodes.

traction search space is pruned at different levels in the trie
during the traversal and validation process. Therefore, the
workload of each sub-trie is not known in advance. The ab-
sence of such knowledge makes load balancing challenging
to achieve. Imbalanced workload means a longer makespan
affecting the efficiency of parallel systems by underutilizing
resources.

FAST decomposes the search space trie into a large num-
ber of independent sub-tries. Our target is to provide enough
sub-tries per core to utilize the computing resources with
minimal idle time. We partition horizontally the search
space trie at a certain depth into a fixed-depth sub-trie and
a set of variable-depth sub-tries, as shown in Figure 5. Since
the motif search space is a combinatorial trie, there are |Σ|lp
sub-tries, where Σ is an alphabet and lp is a certain depth
in the trie (prefix length). The variable-depth sub-tries are
of arbitrary size and shape because of pruning motif can-
didates at different levels. The fixed-depth sub-trie indexes
|Σ|lp prefixes. Each prefix is common to a set of motif can-
didates indexed by a variable-depth sub-trie.

Example. Consider the search space for extracting motifs
of length exactly 15 from a DNA sequence (|Σ| = 4). The
search space trie consists of 415 (1 Giga) different branches,
where each branch is a motif candidate of length 15. If we
choose to set our horizontal partition at depth 2, our prefixes
will be of length 2 and there are 16 large variable-depth
sub-tries. Each sub-trie consists of more than 67 million
branches. If the horizontal partition cuts at depth 8 then
there are 65,536 independent and small variable-depth sub-
tries of 16 thousand branches each.

5.2 The Prefix Length Trade-off
The fixed-depth sub-trie indexes a set of fixed-length pre-

fixes. Each prefix is extended independently to recover a
set of motif candidates sharing this prefix. A false positive
prefix is a prefix of a set of false positive candidates, which
would be pruned if a shorter prefix was used. For instance,
if |Σ| = 4 and AA is a prefix that leads to no valid motifs then
partitioning the search space using a prefix length of 5 (i.e.
horizontally partitioning at depth 5) introduces 64 false pos-
itive prefixes that start with AA. The longer the prefix length
is, the higher degree of concurrency is achieved. However,
enlarging the prefix length increases the probability of hav-
ing false positive prefixes, which are useless overhead.

Observation 1. Given distance threshold d, all branches
of length d are valid prefixes.

Any subsequence of length l from the input sequence S
will not exceed the distance threshold d for all search space
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Figure 6: Search space coverage in a DNA sequence.
The shaded regions emphasize false positive prefixes,
which increase by increasing the prefix length and
decrease by increasing the input sequence size.

branches of length l as long as l ≤ d. For example, if a user
allows up to 4 mismatches between a motif candidate and
its occurrences then any subsequence of length 4 from the
input sequence is a valid occurrence of any prefix of length
4 in the search space. Observation 1 means that no pruning
can be done until depth d of the search space, assuming the
frequency threshold is met. We say that the search space is
fully covered at depth d.

Observation 2. As the input sequence size increases, the
depth of the search space with full coverage increases, too.

A longer sequence over a certain alphabet Σ means more
repetitions from Σ. Therefore, the probability of finding oc-
currences for motif candidates increases. Our experiments
show that even for a relatively small input sequence, the
search space can be fully covered to depths beyond the dis-
tance threshold. Figure 6(a) shows that prefixes of length
less than 10 symbols are fully covered although the sequence
size is 1MB. In this experiment, the prefix of length 10 leads
to more than 0.5M false positive prefixes, i.e., useless sub-
tasks will be processed. Moreover, increasing the size of the
input sequence increases the coverage of the search space.
Figure 6(b) shows that the number of false positive prefixes
generated at lp=10 in the 1MB sequence decreases by in-
creasing the sequence size.

Observation 3. If the search space is horizontally par-
titioned at depth lp, where the average number of sub-tries
per core leads to high resource utilization, then a longer lp
is not desirable to avoid the overhead of false positives.

5.3 The FAST Algorithm
FAST guarantees enough independent sub-tries per core.

Each sub-trie is transferred in the compact form of a fixed-
length prefix. The generation and distribution cost of a sub-
trie is negligible compared to the average computation load
per sub-trie. As a preprocessing step, every worker loads
the input sequence and constructs its suffix tree in memory
to limit overall communication. Dynamic scheduling dis-
tributes sub-tries based on their actual workloads. FAST
horizontally partitions the search space trie and schedules
sub-tasks as shown in Algorithm 2. Fixed-length prefixes are
generated serially by the master process. Function GetOp-
timalLength in line 1 of Algorithm 2 calculates the near-
optimal prefix length based on Equation 1.

lp = dlog|Σ|(K × C)e (1)

Input: Alphabet Σ, Number of cores C
Output: Generate and schedule sub-tasks

// Calculate optimal prefix length
1 lp ← GetOptimalLength( )

2 i← 0 // An iterator over all prefixes of length lp

// Assign sub-tasks
3 While i 6= prefixes end do
4 sub-task ← GetNextPrefix(i)
5 WaitForWorkRequest( )
6 SendToRequester(sub-task)
7 i← i+ 1

// Signal workers to end
8 While worker exist do
9 WaitForWorkRequest( )

10 SendToRequester(end)

Algorithm 2: PartitioningAndScheduling
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Figure 7: Correlation between caches misses and
motif extraction time; DNA dataset.

Equation 1 calculates the prefix length (lp) based on al-
phabet size |Σ| and number of cores C. The near-optimal
workload balance is achieved when the average number of
sub-tries per core is more than K, i.e., |Σ|lp/C > K. The
exact-length prefixes are generated by a depth-first traver-
sal of the fixed-depth sub-trie. An iterator is used to recover
these prefixes by a loop that goes over all combinations of
length lp from Σ. The master process is idle as long as all
workers are busy. Algorithm 2 is lightweight compared to
the extraction process carried out by workers. Hence, par-
allelizing the prefix generation does not lead to any speedup
in the overall process.

6. EVALUATION
ACME 4 is implemented in C++ with two versions: (i)

ACME-MPI uses MPI to run on shared-nothing systems,
such as clusters and supercomputers. (ii) ACME-THR uti-
lizes shared-memory threads on multi-core systems, where
the sequence and its suffix tree are shared among all threads;
therefore, it can process longer sequences.

We used real datasets of different alphabets: (i) DNA5

from the entire human genome (2.6GB, 4 symbols alphabet);
(ii) Protein6 sequence (6GB, 20 symbols); and (iii) English7

text from a Wikipedia archive (1GB, 26 symbols). In some

4ACME code and the used datasets are available online at:
http://cloud.kaust.edu.sa/Pages/acme software.aspx
5http://webhome.cs.uvic.ca/ thomo/HG18.fasta.tar.gz
6http://www.uniprot.org/uniprot/?query=&format=*
7http://en.wikipedia.org/wiki/Wikipedia:Database download
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Figure 8: Serial execution of ACME extracting exact length motifs using one core vs FLAME.

experiments, especially in cases where our competitors are
too slow, we use only a prefix of these datasets. We executed
our experiments on various architectures: (i) 32-bit Linux
machine with 2 cores @2.16GHz and 2GB RAM, each core
has 64KB L1 cache and 1MB L2 cache; (ii) 64-bit Linux
machine with 12 cores @2.67GHz sharing 192GB RAM, each
core has 64KB L1 cache and 256KB L2 cache with 12MB L3
cache; (iii) 64-bit Linux symmetric multiprocessing system
(SMP) with 32 cores @2.27GHz sharing 624GB RAM, each
core has 64KB L1 cache and 256KB L2 cache with 24MB
L3 cache; (iv) IBM BlueGene/P supercomputer with 16,384
quad-core PowerPC processors @850MHz, with 4GB RAM
per processor (64TB distributed RAM), each core has 64KB
L1 cache and 2KB L2 cache with 8MB L3 cache.

6.1 CAST: Minimizing Cache Misses
Traverse is the process of going through the possible motif

candidates. The available motif extraction methods pay a
high cost in terms of cache misses during the Traverse phase.
ACME, on the other hand uses our CAST approach to repre-
sent the search space in contiguous memory blocks. The goal
of this experiment is to demonstrate the cache efficiency of
CAST. We implemented the most common traversing mech-
anism utilized in the recent motif extraction methods, such
as FLAME and MADMX, as discussed in Section 2. We
refer to this common mechanism, as NoCAST.

We used the perf Linux profiling tool to measure the L1
cache misses. This test was done on the 2-core Linux ma-
chine. CAST significantly outperforms NoCAST in terms
of cache misses and execution time especially when the mo-
tif length, and consequently the workload, is increasing, as
shown in Figure 7.

6.2 Comparison Against State-of-the-art
We compared ACME to FLAME, MADMX, and VARUN

based on different workloads. Since the source code for
FLAME was not available, we implemented it using C++.
MADMX8 and VARUN9 are available from their authors’
web sites. These systems do not support parallel execution
and are restricted to a particular motif type (exact-length or
maximal motifs). The following experiments were executed
on the 12-core Linux machine but, since our competitors run
serially, for fairness ACME uses only one core. The reported
time includes the suffix tree construction and mining time;
the former is negligible compared to the mining time. Note

8http://www.dei.unipd.it/wdyn/?IDsezione=6376
9http://researcher.ibm.com/files/us-parida/varun.zip
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Figure 10: Right-supermaximal vs Exact-length mo-
tifs extraction using ACME-THR in the 12-core ma-
chine.

that we use small datasets (i.e., up to 8MB from DNA),
because our competitors cannot handle larger inputs.

FLAME and ACME produce identical exact-length mo-
tifs. The serial execution of ACME significantly outperforms
FLAME with increasing workload, as illustrated in Figure 8.
The impressive performance of ACME is a result of its cache
efficiency. Note that if we were to allow ACME to utilize all
cores, then it would be an order of magnitude faster than
the serial version. For example, we tested the query of Fig-
ure 8(a) when motif length is 12: FLAME needs 4 hours,
whereas parallel ACME finished in 7 minutes.

For maximal motifs, ACME is evaluated against MADMX
and VARUN. Different similarity measures are utilized by
ACME, MADMX and VARUN. Therefore, this experiment
does not allow mismatches in order to produce the same re-
sults. Since the workload increases proportionally to the dis-
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Speedup Efficiencies w.r.t. K sub-tasks per core

Cores ≤ 8 16–32 64–128 256–512 1,024 ≤
512 0.85 0.94 0.99 0.97 0.81
1,024 0.73 0.87 0.97 0.97 0.83
2,048 0.83 0.92 0.97 0.83
4,096 0.46 0.83 0.92 0.76
8,192 0.25 0.76 0.46

Table 2: Analysis to find a near-optimal value for K
in Equation 1. ACME speedup efficiencies on Blue
Gene/P using DNA with different prefix lengths.
The Speedup is negatively affected by a small or
very large K.

tance threshold, this experiment is relatively of light work-
load. Again, for fairness all systems use only one core. Fig-
ure 9 shows that ACME is at least one order of magnitude
faster than VARUN and two orders of magnitude faster than
MADMX. Surprisingly, VARUN breaks while handling se-
quences longer than 1MB for this query, despite the fact that
the machine has plenty of RAM (i.e., 192GB).

The next experiment demonstrates that ACME is capa-
ble of extracting rs-motifs from very long sequences with
minimal overhead compared to maximal motifs. We use the
12-core machine and allow ACME to utilize all cores. Since
we are executing only our method, we use 3 orders of mag-
nitude larger datasets than the previous experiment (i.e.,
0.5GB to 1.5GB from DNA). Figure 10(a) shows that there
are significantly more rs-motifs compared to exact-length
ones. Figure 10(b), however, shows that ACME needs only
slightly more time to extract all rs-motifs, compared to the
exact-length ones.

6.3 FAST: Optimizing Parallel Execution
In this section, we investigate the parallel scalability and

speedup efficiency of ACME. We conducted strong scala-
bility tests, where the number of cores increases while the
problem size is fixed. The speedup efficiency measures the
average utilization of C cores, and is calculated as ( τ1

C∗τC
),

where τ1 is the time of serial execution, and τC is the time
achieved using C cores. In the optimal case this ratio is 1.

We identify empirically a value for K in Equation 1 that al-
lows ACME to achieve near-optimal speedup. Table 2 shows
our analysis. Speedup efficiency is negatively affected by a
small number of sub-tasks per core. This case appears when
scaling to thousands of cores. For example, when K ≤ 8
the workload is imbalanced; thus the parallel performance is
the lowest. Enlarging K is achieved by using a longer prefix.
However, a longer prefix increases redundant work. There-
fore, performance may be negatively affected, as shown in
the case of K ∈ [64− 128] and 8,192 cores.

We analyzed Equation 1 over different workloads. We
empirically find K=16 achieves a near-optimal speedup ef-
ficiency with different alphabet sizes and system architec-
tures. Table 3(a) shows the results of a query over pro-
tein sequence on a Blue Gene/P supercomputer. Due to
resource management restrictions, the minimum number of
cores used in this experiment was 256 cores, and hence the
speedup efficiencies are calculated relative to a 256-core sys-
tem. With larger alphabets, Equation 1 leads to a small
prefix length (lp) yet the actual average number of sub-tasks
is higher than 16. In Table 3(a), Equation 1 for 16,384 cores

returns lp=5; averaging 205

16,384
=195 sub-tasks per core. How-

|S|=32MB, σ=30K, l=12-∞, d=3 |S|=1GB, σ=500K, l=12-∞, d=3

Cores Hrs. S.E. Cores Hrs. S.E.
256 19.83 1.00 1 15.95 1.00
1,024 4.97 0.99 3 6.30 0.84
2,048 2.51 0.98 6 4.23 0.63
4,096 1.29 0.96 12 2.63 0.51
8,192 0.68 0.91
16,384 0.31 0.98

(a) Protein; Blue Gene/P (b) DNA; 12-core System

Table 3: Scalability of ACME on different comput-
ing architectures using different alphabets. S.E. de-
notes the speedup efficiency. ACME’s S.E. for thou-
sands of cores is strongly affected by the average
number of tasks per core. Since ACME is self-tuned
using Equation 1, the average number of tasks per
core changes with the number of cores. Hence, S.E.
does not necessarily decrease as the number of cores
increases.

|S| = Full Human Genome, σ=500K, lmin=15, lmax=var, d=3
RS-Motifs Exact-length motifs

(lmax = ∞) (lmax = lmin)

Len Count Len Count Len Count Length Count

15 359,293 20 30,939 25 443 15 446,344

16 82,813 21 33,702 26 143 Total 446,344
17 22,314 22 12,793 27 37
18 7,579 23 5,289 28 2
19 2,288 24 2,435 Total 560,070

Table 4: RS-Motifs from the complete human
genome sequence (2.6GB) categorized by length.
The total number of rs-motifs is more than total
number of exact-length motifs.

ever, for 8,192 cores Equation 1 returns lp=4; averaging 19
sub-tasks per core. This explains the better speedup effi-
ciency with 16,384 compared to 8,192 cores.

Note that, although the query of Table 3(a) is against a
sequence of size 32MB, it takes more than 10 days on an
8-core high-end workstation fully utilized by ACME. This is
because the query workload is not only affected by sequence
size but also by alphabet size, motif length, distance and fre-
quency. ACME solved the same query in 18.6 minutes using
16,384 processors. The speedup of ACME on our 12-core
shared memory machine for queries against DNA (1GB) is
shown in Table 3(b). This experiment indicates that ACME
is affected by the interference of using shared resources, such
as memory and caches.

6.4 Interesting Findings in Real Datasets
In this section we demonstrate that ACME can provide

useful insights into the properties of large real datasets,
which are simply beyond the reach of any existing system.
First we focus on the entire human genome (2.6GB). We use
our 32-core machine and it takes around 10.5 hours to gener-
ate the results of Table 4. For example, if we allow distance

Parameters # Motifs Longest Time
DNA σ=500K, l=12−∞, d=2 5,937 20 0.6 min
Protein σ=30K, l=12−∞, d=1 96,806 95 2.1 min
English σ=10K, l=12−∞, d=1 315,732 42 3.5 min

Table 5: Analysis of three sequences of different al-
phabets, each of size 1GB, processed by ACME on
a 12-core system.
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d = 3, the longest motif that appears at least 500K times is
28 symbols long, and there are only two such motifs.

We also extracted 1GB long prefixes from the DNA, Pro-
tein and English datasets and ran queries with appropriate
parameters for each dataset. For this experiment we used
the smaller 12-core machine. The parameter settings and
the results are summarized in Table 5. For example, if we
allow distance d = 1 the longest motifs that appear in the
English dataset (i.e., Wikipedia) at least 10,000 times are
42 characters long. Interestingly, these motifs are: “natural
habitats are subtropical or tropical mo” and “united states
the population was at the census en”, possibly because the
used Wikipedia extract was mainly geography-related.

7. CONCLUSION
Many important applications, such as bioinformatics, time

series and log analysis, depend on motif extraction from one
long sequence. Existing methods for extracting motifs from
a single sequence are cache inefficient and serial. Paralleliz-
ing motif extraction attracted a lot of research efforts. How-
ever, most parallel motif extractors target a set of short
sequences instead of a single long sequence.

This paper introduced ACME, a parallel combinatorial
method for extracting motifs repeated in a single long se-
quence. ACME is based on two novel models, CAST and
FAST to effectively utilize memory caches and processing
power of multi-core shared-memory machines, and large-
scale shared nothing systems with tens of thousands of pro-
cessors, which are typical in cloud computing. ACME is 34
times faster than a recent exact-length motifs extractor, and
2 orders of magnitude faster than maximal motif extractors.

In our experiments we demonstrated that ACME handles
the entire human genome on a single high-end multi-core
machine; this is 3 orders of magnitude longer than what the
state-of-the-art methods can support. Our system has prac-
tical applications in large-scale real life problems in bioinfor-
matics, web log analysis, time series and other fields. Cur-
rently ACME is an in-memory system. We are working on a
disk-based version that will allow ACME to support longer
sequences in systems with limited memory.
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