
MyMIDP: An JDBC driver for accessing MySQL from mobile devices

Hagen Höpfner and Jörg Schad and Sebastian Wendland and Essam Mansour
International University in Germany
School of Information Technology

Campus 3, D-76646 Bruchsal, Germany

E-mail:FIRSTNAME.LASTNAME@i-u.de (replaceö by o)

Abstract

Cell phones are no longer merely used to make phone
calls or to send short or multimedia messages. They more
and more become information systems clients. Recent
developments in the areas of mobile computing, wireless
networks and information systems provide access to data
at almost every place and anytime by using this kind of
lightweight mobile device. But even though mobile clients
support the Java Mobile Edition or the .NET Micro Frame-
work, most information systems for mobile clients require
a middle-ware that handles data communication. Java’s
JDBC provides a standard way to access databases in Java,
but this interface is missing in Java ME. In this paper we
present our implementation of an MIDP-based Java ME
driver for MySQL similar to JDBC that allows direct com-
munication of MIDP applications to MySQL servers with-
out a middleware.

1. Introduction and Motivation

Nowadays ubiquitous, nomadic, and pervasive comput-
ing is not a longer vision but reality. Devices become
smaller and easier to carry around. Accessing world wide
information via wireless links is possible almost anytime
and everywhere. Hence, cell phones or smart phones are no
longer voice communication devices but small footprinted
information system (IS) clients.

Even though most current mobile devices provide an
environment for third party applications – most promi-
nently Java ME’s Connected Limited Device Configuration
(CLDC) in combination with the Mobile Information De-
vice Profile (MIDP) – there is a lack of standardized soft-
ware for combining IS and mobile devices. Most existing
approaches like SyncML or Hotsync concentrate on syn-
chronization aspects or use an additional middle-ware. A
direct access to data from a database server like MySQL is

not possible. However, due to the recent developments in
the areas of mobile hardware and wireless networks, this
approach becomes more and more reasonable. Java desktop
applications often use an JDBC driver for this purpose. In
order to fill the gap we implemented an MIDP-based Java
ME driver for MySQL similar to JDBC that allows direct
communication of MIDP applications to MySQL servers
without a middle-ware.

The remainder of this paper is structured as follows. Sec-
tion 2 includes a brief introduction to the development of
mobile applications with Java ME and illustrates the over-
all architecture of the driver. Section 3 describes how the
driver can be used from within an MIDP application. Sec-
tion 4 explains the limitations of our driver. Section 5 relates
our work to other approaches. Section 6 briefly introduces
MyMIDP-Client, a prototype MySQL client that uses the
MyMIDP driver. Section 7 summarizes the paper and shows
open issues that will be researched in the future.

2. Overall Architecture

In this section we present the driver architecture. As
this requires some background information into Java ME,
we would like to first introduce Java ME before giving a
detailed architectural overview. We assume that the reader
knows a little bit about programming with Java.

2.1 Java SE vs. Java ME delevopment

Java ME development differs significantly from devel-
opment with Java SE. In Java SE, all clients have identi-
cal class libraries and virtual machines – given they use the
same Java version – as they are standardized by Sun. With
Java SE – and especially with the Java EE extension – Sun
tries to fullfill the needs of every application developer.

Java ME on the other hand is based on the concept of
minimal building blocks. First, so calledconfigurationsde-
fine a basic runtime environment. This environment only

1



defines ”aminimum complementor the ’lowest common de-
nominator’ of Java technology”, is ”possibly incomplete for
real target devices” and ”shall not define any optional fea-
tures” [14]. This results in execution environments with
less than 80 classes for the popular CLDC in version 1.1.
In comparison, Java SE has more packages than CLDC has
classes.

Second, so calledprofiles, such as MIDP, define addi-
tional libraries on top of a configuration for specific device
categories or purposes. Profiles adhere to the same general
design principles as configurations but can differentiate be-
tween obligatory, optional and recommended features [15].

Third, a number of standard APIs from the JSR pro-
cess define additional features like encryption, content han-
dling, Bluetooth access and more. They are again bundled
in JSR plattform definition standards (for example JSRs
751, 1852 and 2483) to simplify development (as adher-
ence to a plattform definition implies the support for all
bundled standards). For more information on the differ-
ences in the Java versions we refere to Suns Java website
http://java.sun.com.

As almost no two mobile devices are equal, each man-
ufacture must implement his own version of the Java vir-
tual machine on his devices. By doing so the manufacture
can choose which standards and features should be imple-
mented. This creates a problem because each Java ME im-
plementation differs in some aspects. Additionally, each
implementation comes with certain restrictions. For exam-
ple, many virtual machines limit the maximum Jar file size
and ignore everything above this limit. (A limit of about
64kB was and is very popular, especially on low-end de-
vices.)

2.2 Preliminary considerations

Before we started the development we set ourselves four
design goals:

1. Keep the driver API as near to the JDBC specification
as possible

2. Keep the Jar file size below 32kB – half the popular
64kB limit – to leave enough space for the application

3. Only implement required features

4. Keep the implementation code as simple and perfor-
mant as possible

1JSR 75: PDA Optional Packages for the J2METM Platform:
http://jcp.org/en/jsr/detail?id=75

2JSR 185: JavaTM Technology for the Wireless Industry:
http://jcp.org/en/jsr/detail?id=185

3JSR 248: Mobile Service Architecture:
http://jcp.org/en/jsr/detail?id=248

These goals were mostly achieved. Our current de-
velopment version provides database access sufficient for
most applications in just 27kB. (In comparison, the MySQL
JConnector JDBC driver has more than 500kB.) On the
other hand we had to cut short on some aspects like
parametrized queries and meta data usage.

2.2.1 Analysis

In order to communicate successful with a database server,
a number of problems must be solved:

• Packet sequence control (available packet types and
their expected order and content)

• Packet assembly and dissembly (order and type of
packet fields and their expected or allowed values)

• Packet field encoding and decoding (types of fields and
how are they encoded)

• Protocol flags (what are the protocol options and their
meanings, which combinations are allowed or ex-
pected)

• Password encryption algorithm (how is the password
encrypted during authentication)

• MySQL data types and their structure (how is database
content transfered to the client)

• Database meta data (what kind of database meta data
is available and must or should be analysed)

Below we give some information on some of the prob-
lems we encountered and their solution.

2.2.2 Conversion between Java and MySQL data types

The CLDC runtime environment only implements basic
types but not extended SQL data types as provided by the
Java SEjava.sqlpackage nor the large data types provided
by the java.mathpackage. This meant from the beginning
that not every MySQL data type could be natively supported
or without loss of usability.

To standardize our conversation approach, we set up a
number of rules:

• All MySQL data types are converted in their nearest
Java counterpart if possible

• Signed and unsigned numbers are handled the same
way

• MySQL date and time data types are converted to the
JavaDate type only if it is possible with minimal ef-
fort, otherwise process as string

2



• Finally, process all inconvertible data types as string
(i.e. MySQLDECIMAL, ENUM and similar)

As the MySQL client/server protocol uses two different
data encoding schemes, namely ’converted to string’ and
’binary as stored’ [9], we had to implement two decod-
ing routines. This results in a few conversion problems as
we could not match both implementations perfectly. Fortu-
nately one can work around this problem by avoiding prob-
lematic data types. In Section 4 we give additional informa-
tion on this delicate topic.

2.2.3 MySQL client/server protocol documentation

Even though MySQL has a very good end user documen-
tation, the kind of in-depth information we needed is not
readily available, especially not background informationon
flags and field. This meant we had to look for documenta-
tion at a number of different places, including source code
and captured packets.

Unfortunately, the information we gathered was sketchy
at some places and even wrong at others. For example, one
can not use theCONNECTWITH DB option of the authen-
tication process as described in the MySQL Internals doc-
umentation but must specify the database afterwards. This
fact is stated nowhere but was discovered during out tests
and solved through packet analysis.

2.2.4 Application developer API

As stated before, our goal is an API very similar to the
JDBC one. This meant identifying the necessary func-
tionality and methods as well as making some design de-
cisions. For example, we decided to drop all interfaces
and to implement the functionality described directly as
classes, using the same method and class names. In the
end we implemented three JDBC interfaces, namelyCon-
nection, StatementandResultSet. Additionally we imple-
mented aQueryclass to provide missing functionality for
parametrized statements.

2.3 Class overview

Figure 1 shows the basic class diagram of the driver. As
one can see, the driver consists of just eight classes (plus
four helper classes and exceptions not shown). Below fol-
lows some detailed information on the tasks of each class.

2.3.1 Buffer

TheBuffer class is responsible for encoding and decoding
packet fields as well as for the conversion between MySQL
and Java data types. The large number of different field
and encoding types in the client/server protocol results in

OkResultSet Statement Connection Query

ResultSet

Field Buffer

MysqlIO

1
1

1 1

1
1

111

* *

***

Figure 1. Class Overview

a large number of methods, making this class the largest
one. Its inner workings are inspired by the Buffer class of
the MySQL JConnector and uses an automatically growing
byte array.

The aim with this class was to keep memory consump-
tion small and to reduce garbage collection as it is quite pro-
cessing intensive. Reusing a byte array as much as possible
is a good way to do this. Only in case the array is to small
to hold all data, a new, bigger one is created and the data is
copied over. In addition, by making the array larger then ac-
tually needed, the growing only happens infrequently, thus
keeping the effort small. Internal pointers keep track of the
actually used array space and the ’reserve’; internal bound-
ary checks perform the necessary pointer adjustments.

2.3.2 MysqlIO

The MysqlIO class handles the communication with the
database server. It contains methods to assemble and dis-
semble all packet types, but does not have any clue about the
packet sequence. Most other classes can access an instance
of this class and use its methods to perform their tasks.

The MysqlIO class uses twoBuffer instances, one for
sending and one for receiving, to which it has exclusive ac-
cess, ensuring strict task separation between the classes.

2.3.3 Connection

TheConnectionclass is very similar to theConnectionin-
terface of JDBC. It owns an instance ofMysqlIOand uses
it to provide connection specific methods like opening and
closing a connection and changing the database. It also
works as factory forStatementandQueryobjects.

2.3.4 Statement

TheStatementclass is very similar to the JDBCStatement
interface. It provides methods to execute database queries
and fetch the the result. For this it implements the packet
sequence logic necessary, but relies on the instance of the
MysqlIOclass hold by theConnectionclass factory for do-
ing all packet processing.

3



2.3.5 Query

The Query class provides basic functionality for
parametrized queries. It uses a string buffer to re-
place occurences of question marks in the query string
with the desired parameters. Because MIDP does not
provide any regular expression capabilities, the algorithm
works strictly linear, does not consider already processed
or inserted parts of the query string and does not offer any
escape capabilities.

2.3.6 Field, ResultSet and OKResultSet

These three classes manage the retrieved database data. The
OKResultSetis an simple query information storage and
is solely used by theStatementclass. It is not directly
available to the application developer but must be accessed
through methods provided by theStatementclass.

TheResultSetclass performs the same job as the JDBC
ResultSetinterface, providing exactly the same row-pointer
based access methods. It uses an array ofField class in-
stances to store and process all column specific data. In
fact, theResultSetdoes only act as a facade to theField
class, managing the row dimension of the database result
set.

The Field class provides column wise storage for
database result sets and meta data. A large number of sim-
ple methods provide access to specific column- and meta
data. It is only used internally by theResultSet.

2.3.7 Helper classes

Three additional helper classes provide a number of static
methods for common tasks not really part of the driver (like
string operations). An additionalConstantsclass contains
all the necessary constants. Finally, there is oneSQLExcep-
tion class used throughout the driver.

3 Using MyMIDP

3.1 Device requirements

Every MIDP 2.0 compatible device should be able to use
the driver when the following, additional requirements are
fulfilled.

• The mobile device must support socket connections
(optional in MIDP 2.1)

• The mobile device must support JSR 1774 (needed for
MySQL authentication via SHA-1)

4JSR 177: Security and Trust Services API for J2METM :
http://jcp.org/en/jsr/detail?id=177

• The device should have at least one megabyte of free
heap memory (depending on the implementing appli-
cation)

3.2 Simple usage scenario

Since the driver API is a very similar to JDBC, a devel-
oper familiar with JDBC will not have any problems using
our driver. And even developers new to database APIs will
find our driver easy to use as it always follows four steps.

1. Create a database connection

2. Create and execute a database statement

3. Process the result set

4. Close the connection

Steps two and three can be repeated in case more than
one query must be executed.

For illustration purposes the following listing shows a
short usage example.

import de.iu.db.mysql.mini.Connection;
import de.iu.db.mysql.mini.ResultSet;
import de.iu.db.mysql.mini.Statement;
import de.iu.db.mysql.mini.exceptions.SQLException;

public class Demo{

public static void main(String[] args){

try {
// connecting to database ’catsanddogs’ on server
// test.somenetwork.net:3006, user ’test’, pwd ’run’
Connection con =new

Connection(”test.somenetwork.net”, 3006,
”test”, ”run”, ”catsanddogs”);

// retrieve some data
Statement st = con

.createStatement
(”SELECT name,age, owner FROM dogs”);

ResultSet rs = st.executeQuery();

// loop through the result set
for (; rs.current()< rs.getResultCount(); rs.next()){

// access the data using row and column pointer
System.out

.println(”The Dog ” + rs.getAsString(0) + ”(”
+ rs.getAsInt(1) + ”) is owned by ”
+ rs.getAsString(2));

}

// adding some data
long count = st

.executeUpdate
(”INSERT INTO dogs (name,age, owner)” +
”VALUES (’Angel’, 12, ’Charlie’)”);

System.out.println
(”Added ” + count + ” datasetswith message:”
+ st.getMessage());

// end the session
con.close();

} catch (SQLException e){
// do some error handling
e.printStackTrace();

}
}

}

4



3.3 Main differences to JDBC

There are a few important usage differences to JDBC
we would like to point out. First, the driver does not use
the JDBC style connection URL but method parameters for
simplicity and performance reasons. Second, theStatement
object can be reused thus improving garbage collection.
Third, it is not possible to execute multiple statements at
the same time as they use the sameMysqlIOclass instance
and thus share buffers.

4 Limitations

Because of the previously stated restrictions of the CLD-
C/MIDP runtime, we had to compromise and drop a num-
ber of features available in the normal MySQL JDBC driver.
Following is an overview of the limitations and their cause.

4.1 No support for pre 4.1 MySQL server

The most significant restrictions of our driver is the miss-
ing support for pre 4.1 MySQL server. This decision was
caused by two facts.

First, version 4.1 of the MySQL server introduced an en-
hanced version of the client/server protocol. This new pro-
tocol differs significantly from the previous versions, pro-
viding a new authentication mechanism using SHA-1 and
extended meta data support. These changes had a price,
namely the loss of its backward compatibility. Hence two
protocol implementations would be necessary to support pre
4.1 server as well as current ones. This would have required
hundreds of additional lines of code at the prize of an in-
creasedjar file size.

Second, the extended support time frame for all pre 4.1
MySQL server will end at the end of 2008. [10] This made
the likelihood of encountering an unsupported server ver-
sion unlikely at best.

4.2 Limited character set support

The CLDC specification states that the ”Character in-
formation is based on the Unicode Standard, version 3.0.
However, since the full character tables required for Uni-
code support can be excessively large for devices with tight
memory budgets, by default the character property and case
conversion facilities in CLDC assume the presence of ISO
Latin-1 range of characters only. More specifically, imple-
mentations must provide support for character properties
and case conversions for characters in the ’Basic Latin’ and
Latin-1 Supplement’ blocks of Unicode 3.0. Other Unicode
character blocks may be supported as necessary.” [14]

For this reason, character conversation capabilities are
very limited in CLDC. In order to keep our driver small and

fast, we decided to limit all string conversions to the ISO
Latin-1 range and to use the standard conversations pro-
vided by the String class instead.

This means a number of restrictions for both the MySQL
server and the mobile device. First, the server must use
Latin-1 for all communication with the client and second the
client device must use the Latin-1 character set as default.
Also, the target database should use the Latin-1 character
set but this is not necessary if the returned strings are post
processed by the application.

4.3 No support for prepared statements

In the current implementation the driver does not sup-
port prepared statements. This has two reasons. First, the
implementation code is quite complex, requiring the imple-
mentation of at least five additional packet types. Second,
the protocol documentation in the MySQL Internals wiki is
still ’tentative’ and incomplete [9].

4.4 Limited data type support

The client/server protocol uses two different encoding
schemas: All standard result sets are returned as a charac-
ter string – non-character types are converted into a string–
while results from prepared statements and default column
values are returned as binary [9]. To keep the implementa-
tion size small, we did not match both conversation routines
perfectly. This is especially true for the date and time data
types.

In the current implementation state this problem is not
very serious as we use the binary conversion only at one
place – decoding the default column value. But in future
implementations with support for prepared statements this
might be a problem.

Additionally, we recommend to use only types which can
be converted directly by Java (i.e. signed integers, floating-
point numbers, character strings and timestamps) as these
types can be used without complication.

4.5 No transaction handling

Due tojar size considerations, we droped any built in
support for transaction handling as we deemed it not neces-
sary for mobile devices. The fact that MySQL just uses
standard SQL commands for transaction handling (SQL
START TRANSACTION, COMMIT and ROLLBACK) and
no custom command codes (as it does for theUSE com-
mand), made this decision easy as an application developer
can add his own transactional logic if needed.

5



4.6 No meta data analysis

In the current development state the
driver does not analyse any server meta data
like SERVERSTATUSAUTOCOMMIT and
SERVERSTATUSCURSOREXISTSas it is of no practical
use. This must be changed if more advanced features are
required.

4.7 Limited error handling

Again,jar size considerations had us cut the error han-
dling capabilities. The entire driver only defines one cus-
tom exception. All exceptions thrown inside the driver are
encapsulated into this exception and handed up to the appli-
cation. On the other hand, to ensure proper error handling,
all caught exceptions are attached to ours and handed up
thus allowing more extending error handling if needed by
the application.

Another feature we deemed unnecessary is the conver-
sion of standard MySQL error messages into the standard
SQL error statements as it is done in JDBC. This kind
of error handling is not needed on a limited device as it
does not provide any additional information and as such is
only needed in applications with exchangeable data sources.
However, the MySQL server passes the standard SQL error
code in its error messages and is as such available to the
application.

4.8 No support for parallel processing

In the current driver version we try to reuse objects as
much as possible to keep the memory footprint small and
the garbage collection to a minimum. On the other hand,
this means that parallel operations like multi threading will
not work properly as data is lost or overridden. During nor-
mal operation this does not play any role as any database
operation will be processed fully before an API method re-
turns, thus leaving the connection always in a determined
state. Only if the executing thread is interrupted, the con-
nection might end up in an unknown state. Anything can
happen from this point on.

4.9 Limited SQL support

The client/server protocol uses special packets for some
SQL commands, for example for the SQLUSEbut also for
the MySQL specific administration commands. Currently,
with the exception ofUSE, the driver does not implement
these special packets, they are hence not supported.

5 Related Work

Almost all vendors of database management systems of-
fer a lightweight version of their database management for
mobile devices [3]. However, to our knowledge none of
them allows a direct communication between the applica-
tion and the database management system. Oracle Lite
[11, 13, 12] and IBM’s DB2 Everyplace [4, 5] use a middle-
ware approach for synchronizing data between client and
server. Microsoft’s SQL Server CE [8] needs Active Sync
and Sybase Adaptive Server Anywhere [16] either uses
SQL-Remote and its message oriented replication or Mo-
biLink as a session based approach. All these systems are
designed for handling replicated data [7] but not for simple
client/server data access. Furthermore, no one of the major
players supports MIDP devices so far.

In previous works [1, 6] we used a simple web service
that forwards queries to the server and returns the result
to the requesting client using an HTTP-connection. How-
ever, this approach is comparable to the middle-ware solu-
tions and requires additional software (the web service) that
might be an additional point of failure. We aim at develop-
ing a pure client/server solution without additional middle-
ware or messaging server.

Figure 2. Screenshots of MyMIDP-client

6



6 MyMIDP-Client

Figure 2 shows four screenshots of the MyMIDP-client,
a MyMIDP based prototype MySQL client application that
has been implemented for demonstration purposes [2]. Af-
ter inserting the connection information (server address,
port, user, password, database) the client offers alternative
query types to the user. However, this step helps reducing
the text the user has to typ in via the cell phones’ keyboard.
It results in the third screen that allows to complete the
query. The next step is to submit the query. Due to security
reasons each java application authomatically requests con-
firmation before establishing any internet connection. The
screen of this request, that is not shown in Figure 2, is fol-
lowed by a screen that displays the query results. This query
result is the result of the direct communication between our
client and a MySQL server via the MyMIDP driver. Due
to the limited display size we decided to show only the first
attribute of each tuple and to number the tuples. The re-
maining attribute values can be displayed by selecting the
respective row. However, this function managed by the ap-
plication only andno feature of the MyMIDP driver.

7 Summary and Outlook

In this paper we presented our implementation of a
MIDP-based Java ME driver for MySQL. Similar to JDBC
for Java SE it allows direct communication of MIDP appli-
cations to MySQL servers without a middle-ware. Hence,
it is possible to directly connect a mobile device like a cell
phone to a MySQL server without using a middle-ware. We
discussed implementation details as well as how to use the
driver. Furthermore we described existing limitations which
mostly result from the restrictions of Java ME and MIDP.

The driver is only the first step in the direction of a full
MySQL support for mobile devices. Wireless transmissions
are expensive and relatively slow. So we plan to include
caching strategies that reduces the retransmissions of data.
Furthermore, we plan to complete the driver with the com-
munities help. Therefore, we will make the source code
available under the GPL.

NOTE: The MyMIDP sources and the MyMIDP-client
prototype implementation are GPL lizensed and available
at http://it.i-u.de/dbis/MyMIDP.

References

[1] A. Caracaş, I. Ion, M. Ion, and H. Höpfner. Towards Java-
based Data Caching for Mobile Information System Clients.
In B. König-Ries, F. Lehner, R. Malaka, and C. Türker, ed-
itors, MMS 2007: Mobilität und mobile Informationssys-
teme; Proceedings of the 2nd conference of GI-Fachgruppe
MMS; March 06, 2007, Aachen, Germany, volume P-104

of Lecture Notes in Informatics (LNI) - Proceedings, pages
97–101, Bonn, Germany, 2007. Gesellschaft für Informatik,
Köllen Druck+Verlag GmbH.

[2] H. Höpfner, J. Schad, S. Wendland, and E. Mansour.
MyMIDP and MyMIDP-Client: Direct Access to MySQL
Databases from Cell Phones, Mar. 2009. BTW-DEMO.

[3] H. Höpfner, C. Türker, and B. König-Ries.Mobile Daten-
banken und Informationssysteme — Konzepte und Tech-
niken. dpunkt.verlag, Heidelberg, Germany, July 2005. in
German.

[4] IBM Corporation. IBM DB2 Everyplace Application and
Development Guide Version 8.2, Aug. 2004.

[5] IBM Corporation. IBM DB2 Everyplace Sync Server Ad-
ministration Guide Version 8.2, Aug. 2004.

[6] I. Ion, A. Caracaş, and H. Höpfner. MTrainSchedule: Com-
bining Web Services and Data Caching on Mobile Devices.
Datenbank-Spektrum, 21:51–53, May 2007.

[7] B. König-Ries, C. Türker, and H. Höpfner. Infor-
mationsnutzung und -verarbeitung mit mobilen Geräten
– Verfügbarkeit und Konsistenz. Datenbank-Spektrum,
7(23):45–53, 2007. in German.

[8] Microsoft Corporation.
http://msdn.microsoft.com/library/, 2008.

[9] MySQL AB. MySQL Internals ClientServer Proto-
col, 2008. Retrieved on January 18, 2008 from
http://forge.mysql.com/wiki/
MySQL Internals ClientServer Protocol.

[10] MySQL AB. MySQL Lifecycle Policy,
2008. Retrieved on February 21, 2008 from
http://www.mysql.com/about/legal/
mysql lifecycle policy.pdf.

[11] Oracle Corporation.Oracle Database Lite, Administration
and Deployment Guide 10g (10.0.0), June 2004.

[12] Oracle Corporation. Oracle Database Lite, Developer’s
Guide 10g (10.0.0), June 2004.

[13] Oracle Corporation.Oracle Database Lite, SQL Reference
10g (10.0.0), June 2004.

[14] Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
California, 95054 U.S.A.Connected Limited Device Con-
figuration (CLDC) Specification, 1.1 edition, Mar. 2003.

[15] Sun Microsystems, Inc. and Motorola, Inc.Mobile Informa-
tion Device Profile Specification, 2.1 edition, May 2006.

[16] Sybase Inc.http://www.sybase.com/ianywhere/
products, 2008.

7


