
Automatic Tuning of Bag-of-Tasks Applications

Majed Sahli ∗1, Essam Mansour †2, Tariq Alturkestani ∗3, Panos Kalnis ∗4

∗ King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
1
majed.sahli@kaust.edu.sa

3
tariq.alturkestani@kaust.edu.sa

4
panos.kalnis@kaust.edu.sa

† Qatar Computing Research Institute, Doha, Qatar
2
emansour@qf.org.qa

Abstract—This paper presents APlug, a framework for auto-
matic tuning of large scale applications of many independent
tasks. APlug suggests the best decomposition of the original
computation into smaller tasks and the best number of CPUs
to use, in order to meet user-specific constraints. We show that
the problem is not trivial because there is large variability
in the execution time of tasks, and it is possible for a task
to occupy a CPU by performing useless computations. APlug
collects a sample of task execution times and builds a model,
which is then used by a discrete event simulator to calculate the
optimal parameters. We provide a C++ API and a stand-alone
implementation of APlug, and we integrate it with three typical
applications from computational chemistry, bioinformatics, and
data mining. A scenario for optimizing resources utilization is
used to demonstrate our framework. We run experiments on
16,384 CPUs on a supercomputer, 480 cores on a Linux cluster
and 80 cores on Amazon EC2, and show that APlug is very
accurate with minimal overhead.

I. INTRODUCTION

Many scientific and commercial applications, such as
chemoinformatics [1], bioinformatics [2], or data analytics
[3], are designed to leverage large scale parallel computing
infrastructures. In Bag-of-tasks Applications [4], a large com-
putational problem is decomposed into many (i.e., thousands or
millions) loosely coupled tasks, which are executed on many
CPUs on a private cluster, a supercomputer, or a commer-
cial cloud. Typically, users request computational resources
according to their budget. In a research environment, budget is
an awarded amount of core-hours, whereas budget represents
actual financial cost on a commercial cloud. In both cases,
there is an incentive to efficiently utilize the computational
resources.

Users can optimize various quantities; for example, min-
imizing the total execution time given a financial cost con-
straint. In this paper, we use our efficient and accurate estima-
tion of serial and parallel execution times to optimize resource
utilization. Resource utilization is quantified by speedup effi-
ciency (SE). Given the time of serial execution T1 and the
time of parallel execution of the same problem on C cores
TC , SE is calculated as follows:

SE =
T1

C × TC
(1)

SE = 1 indicates perfect parallelism and, consequently,
optimal resource utilization. In practice, resource utilization
is considered good enough if SE ≥ SEmin, where SEmin is
a cutoff threshold. In this paper we will assume SEmin = 0.8.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16 32 64 128 256
S

p
ee

d
u

p
 E

ff
ic

ie
n
cy

Cores

DS1
DS2
DS3
DS4

Fig. 1. Speedup efficiency of VinaLC using four subsets, DS1 to DS4, of
2,000 lead-like compounds each (i.e., same dataset and same size). DS3 scales
very well to 256 cores and beyond. On the other hand, assuming SEmin=0.8,
DS2 does not scale efficiently to more than 128 cores.

Users predict the expected scalability of a program by con-
sulting studies on typical workloads. Consider the following
example from computational chemistry: VinaLC [1] computes
dockings between molecules. The developers state that VinaLC
“scales up to more than 15K CPUs” [1], which is true for their
dataset and computing infrastructure. We extracted four sub-
sets, DS1 to DS4, each containing 2,000 lead-like compounds1

from the ZINC dataset. Each compound was docked against
the Thermus thermophilus gyrase B complex. We executed
VinaLC on a local Linux cluster by varying the number of
cores; the resulting speedup efficiencies are shown in Figure 1.

Interestingly, although all subsets come from the same
dataset and contain the same number of compounds, the
execution times of their tasks vary significantly. On the one
hand, DS3 achieves excellent speedup efficiency for 256 cores
and beyond. Therefore, it is advisable to employ more cores
in order to finish execution faster. On the other hand, the
speedup efficiency of DS2 drops below 0.8 (i.e., our cutoff
point) after 128 cores; using more cores would waste resources.
This experiment demonstrates that the scalability study in
the VinaLC paper is too generic for accurate predictions in
practical usage scenarios.

Two points must be noted: (i) We are interested in the
efficient CPU utilization; not minimization of runtime. In the

1See Section VI-A for details about the experimental settings and datasets.

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 2015843

 0

 0.2

 0.4

 0.6

 0.8

 1

512 1,024 2,048 4,096 8,192

S
p
ee

d
u
p
 E

ff
ic

ie
n
cy

Cores

16,384 tasks
65,536 tasks
262,144 tasks
1,048,576 tasks

Fig. 2. Speedup efficiency of ACME for a query on the human DNA. Each
line corresponds to a different decomposition of the same query. Too few tasks
(i.e., 16,384) cannot achieve load balance. Too many tasks (i.e., 1,048,576)
result in useless computation. For this particular combination of dataset and
query parameters, the optimal decomposition generates 262,144 tasks.

previous example, DS2 would finish faster using 256 cores,
although part of the user’s core-hour allocation would be
wasted. This fact is better appreciated if financial cost is
involved. For example, in a commercial cloud a user would pay
twice as much for only a moderate decrease in execution time.
(ii) Wasting CPU resources does not mean the CPU is idle.
We will see next that a CPU can be fully occupied by useless
calculations. To the operating system, such a CPU looks busy
and cannot be assigned to a different job, so there is no easy
way to achieve efficient utilization. Observe that the speedup
efficiency metric captures this issue.

The previous example corresponds to the easiest case
with only one degree of freedom; the number of tasks is
predetermined by the input, so the user can only control the
number of cores. There exist applications with an additional
degree of freedom; the ability to vary the granularity of the
decomposition of the initial problem into tasks. ACME [3] is
a data mining application representative of this category. Its
input is a long sequence (e.g., DNA, text, or web log) and
the output is a set of frequent patterns. In a nutshell, ACME
generates a combinatorial search space represented by a tree,
and executes a branch-and-bound algorithm. A decomposition
of the original problem into smaller tasks corresponds to a
horizontal cut of the search tree at a specific level. For instance,
if the input is a DNA sequence (i.e., alphabet of 4 symbols),
a cut at level 7 generates 47 = 16,384 tasks.

We ran ACME on an IBM BlueGene/P supercomputer for
different decompositions, varying the number of cores; the
results are shown in Figure 2. When there are too few tasks,
the granularity is not fine enough to balance the workload.
Hence, the program does not scale to more than 2,048 cores.
Surprisingly, if the problem is decomposed into too many
tasks, scalability again suffers. This happens because many
CPUs performing useless computation by processing false
positive branches of the tree. We will further investigate this
issue in Section IV. The best speedup efficiency up to 8,192
cores is achieved for a moderate number of 262,144 tasks.
Note that the optimal decomposition cannot be determined in
advance because it depends on the input sequence and the

query parameters (e.g., minimum frequent pattern support, or
maximum errors allowed) [5].

This paper presents APlug, an automatic tuning framework
for large-scale bag-of-tasks applications that enables users to
efficiently achieve high utilization of CPU resources. Our
framework considers both degrees of freedom, namely, the
degree of parallelism and the problem decomposition. APlug
suggests the best combination of number of CPUs and tasks to
achieve the highest speedup efficiency for a specific combina-
tion of application, dataset, query parameters, and computing
infrastructure.

APlug initiates the automatic tuning process by executing a
sample of tasks to generate a coarse-grained histogram of ex-
pected runtimes, which is approximated by a positively skewed
gamma distribution. Then, it models the parallel execution of
the entire application by a single-queue multiple-server model
that approximates a typical dynamic scheduler with work
stealing. APlug runs on the model a discrete event simulator
that draws tasks from the gamma distribution. The output of the
simulator is an estimation of speedup efficiency. The simulator
is run for different decompositions and varying number of
targeted CPUs in order to predict the best combination. Our
experiments show that the overhead of this process is small
while accuracy is very high.

We provide a C++ API that allows APlug to be easily inte-
grated with any parallel application. We also implement APlug
as a standalone utility that can be used without modifying
the application’s code. APlug can be used in many creative
ways. For example, instead of extracting a separate sample,
the application can start running on an arbitrary number of
CPUs. APlug will gather statistics and then suggest to scale
in or out elastically during the actual execution. Such on-
line adaptivity can compensate for the expected performance
variability on public clouds and shared infrastructures [6], such
as the case for applications that run inside virtual machines
on OpenStack. We also present in the experimental section
a case study of deploying APlug on Amazon EC2. The
user specifies two constraints: maximum execution time and
maximum financial cost. APlug takes into account the coarse-
grained hourly pricing model of Amazon EC2 and suggests
the optimal number of instances to rent.

In summary, our contributions are:

• We propose APlug, an automatic tuning framework for
large-scale applications with many independent tasks.
APlug suggests the best task decomposition to support
massive parallelism while keeping speedup efficiency
within an acceptable range.

• We provide a C++ API to integrate APlug within
applications, as well as a standalone implementation
that does not require modification of the application
code.

• We present three case studies: VinaLC [1] for com-
putational chemistry, SSW [7] alignment tool for
bioinformatics, and ACME [3] for pattern mining.

• We evaluate APlug using 16,384 CPUs on a Blue
Gene/P supercomputer, 480 cores on a Linux cluster,
and 80 cores on Amazon EC2. Results confirm the
accuracy of APlug with minimal overhead.

844

The rest of this paper is organized as follows. Section II
introduces the three case studies. We discuss the foundations
of our model in Section III. Section IV details the APlug
framework, whereas Section V describes the API. Section VI
presents the experimental evaluation. Section VII presents the
related work and Section VIII concludes the paper.

II. SCIENTIFIC APPLICATIONS

We integrated APlug into three representative scientific
applications for molecular docking, sequence alignment, and
pattern mining. The chosen parallel systems are VinaLC [1],
P-SSW (an MPI version of SSW [7]), and ACME [3], respec-
tively. VinaLC and P-SSW handle static task decomposition
problems, while ACME uses dynamic task decomposition.

A. Molecular Docking: VinaLC

Molecular docking predicts the structural orientation in
which two chemical molecules bind to make a stable complex
[8]. It is used to discover new drugs and assist in drugs
repositioning [9]. There are about 30,000 genes in the human
genome that can bind to known drug molecules [10]. It is
estimated that 1060 drug-like molecules exist [11]. To dock
m molecules against n protein structures, m × n docking
operations are required.

We integrated our framework with VinaLC [1]. VinaLC
is the MPI implementation of Vina [12], a popular serial
molecular docking system. Each docking operation is treated
as a task that gets scheduled independently. However, docking
operations vary in execution times, as shown in Figure 1. Users
do not know the workload of their tasks in advance. Hence,
it is challenging to choose the ideal degree of parallelism for
high resource utilization and better response time.

B. Sequence Alignment: P-SSW

The problem of aligning sequences involves arranging
sequences to identify regions of similarity. It is the first step
in studying functional, structural, or evolutionary relationships
between DNA, RNA, or protein sequences [13], [14]. Multiple
sequence alignment is an NP-hard problem [15]. A preprocess-
ing step for multiple sequence alignment is to find pairwise
alignments between all input sequences. Given a dataset of n
sequences, the number of pairwise alignments is

(

n
2

)

= n2
−n
2

.
So aligning 1,000 sequences requires 499,500 independent
pairwise alignments.

We integrated APlug in P-SSW, our parallel implementa-
tion of the SSW [7] alignment tool. SSW is a recent extension
of Farrar’s implementation [16] of the optimal pairwise align-
ment algorithm, the Smith-Waterman dynamic programming
algorithm [17]. P-SSW adopts a dynamic scheduling policy to
assign tasks to workers, where each pairwise alignment is a
task. This policy guarantees better load balancing among cores
when processing pairwise alignments of arbitrary workloads.

C. Pattern Mining: ACME

Pattern mining finds sequential patterns that appear fre-
quently in a very long sequence. It is an important process in
applications such as genome analysis in bioinformatics [18],
predicting stocks using time series [19], and running analytics

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

T
as

k
s

fr
eq

u
en

cy

Time (sec)

DS2
DS3

Fig. 3. Workload frequency distributions for the two subsets, DS2 and DS3,
whose speedup efficiencies are shown in Figure 1. While the two subsets are
of the same size (# tasks) and features (both of lead-like molecules), they have
different workload distributions. In Figure 1, the speedup efficiency of DS3
is significantly higher than DS2’s.

on web logs [20]. The search space is expanded to cover all
combinations from the alphabet of the underlying sequence.

We used ACME [3], a recent combinatorial parallel so-
lution for pattern mining, to validate our framework. ACME
represents the search space of pattern mining as a combi-
natorial tree over the input alphabet. Tasks are created by
partitioning the search space tree using prefixes. The number
of tasks is exponential to the prefix length. A short prefix limits
parallelism by creating a few tasks while a long prefix creates
redundant work and useless tasks. It is challenging to find
the optimal decomposition especially that tasks workloads are
variable and unknown before execution, as shown in Figure 2.

III. APLUG MODELING FOUNDATION

A framework for automatic tuning needs to estimate,
with high precision, the expected parallel execution time and
speedup efficiency using a certain number of cores from a
specific system. Typically, regression analysis is done for each
individual parallel system to model the relationships among
query workload, number of nodes, and speedup efficiency. This
makes the integration difficult and slow to accomplish. This
section highlights our investigation to develop a generic model
that can be applied to a wide range of parallel applications.

A. Modeling Using Workload Frequency Distributions

A workload frequency distribution depicts the workload
density of different sets of tasks and the degree of skewness
among them. Both aspects affect the parallel workload bal-
ance. While workload frequency distributions are discrete, we
represent them with continuous curves for visual convenience.
We analyzed the workload frequency distributions of several
workloads from static and dynamic task decompositions. Due
to the limited space, we present our results from molecular
docking for static decompositions and pattern mining for
dynamic decompositions.

Static process decomposition: Following our example from
Section I, docking four subsets of lead-like molecules against
Thermus thermophilus gyrase B resulted in different speedup

845

 12

 24

 36

 48

 60

 0 100 200 300 400 500 600

T
as

k
s

fr
eq

u
en

cy

Time (sec)

(a) Coarse-grained Decomposition (400 tasks)

0.7K

1.4K

2.1K

2.8K

3.5K

 0 10 20 30 40 50 60

T
as

k
s

fr
eq

u
en

cy

Time (sec)

(b) Fine-grained Decomposition (8K tasks)

30K

60K

90K

120K

150K

 0 1 2 3 4 5 6

T
as

k
s

fr
eq

u
en

cy

Time (sec)

(c) More Fine-grained Decomposition (160K
tasks)

 0

 0.2

 0.4

 0.6

 0.8

 1

15 30 60 120 240 480

S
p
ee

d
u
p
 E

ff
ic

ie
n
cy

Cores

(d) Speedup efficiency for 400 tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

60 120 240 480 960 1920

S
p
ee

d
u
p
 E

ff
ic

ie
n
cy

Cores

(e) Speedup efficiency for 8K tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64

S
p
ee

d
u
p
 E

ff
ic

ie
n
cy

Cores

(f) Speedup efficiency for 160K tasks

Fig. 4. Decomposing our example process to 400 large tasks leads to significant load imbalance. Consequently, the speedup efficiency drops below 0.8

when using more than 60 cores. Decomposing our example process to 8,000 small tasks leads to a nearly optimal load balance. High speedup efficiencies are
maintained up to 500 cores. Decomposing our example process to 160,000 tiny tasks may lead to better load balance. Nevertheless, speedup efficiency is poor
even at 2 cores because most of the 160,000 tasks are useless and would have been pruned given a coarser decomposition.

efficiencies. Figure 1 shows the speedup efficiencies, where
DS3 is best and DS2 is worst. Figure 3 illustrates the workload
frequency distributions of DS2 and DS3.

The tasks from DS2 have an irregular workload frequency
distribution with many “heavy” tasks. Over half of the 2,000
tasks run in more than 200 seconds. It is hard to balance
the workload of DS2 tasks since the probability of a large
task being executed last is very high, rendering most cores
idle towards the end. In contrast, only 67 DS3 tasks run in
more than 200 seconds with most tasks finishing in less than
a minute. Hence, most of the cores will be busy processing a
large number of small tasks, i.e., workload is balanced.

Dynamic process decomposition: We use ACME [3] on a
Blue Gene/P supercomputer to mine a protein sequence for
patterns. Prefixes of different lengths (2 to 4) are used to
decompose the combinatorial search space tree to 400, 8,000,
and 160,000 tasks. Next, we study the workload frequency dis-
tribution for each decomposition, and the relationship between
the number of cores and speedup efficiency.

The workload frequency distribution when the query is
decomposed to 400 tasks is irregular with many “heavy” tasks,
as shown in Figure 4(a). For instance, there are about 70 tasks
that run in less than 100 seconds, but there are also around 130
tasks that need more than 300 seconds; some extreme cases
need more than 500 seconds. Even with dynamic scheduling,
balancing such workload on a parallel system is challenging.
The speedup efficiency using this decomposition is poor, as
shown in Figure 4(d).

When the same pattern mining query was decomposed
to 8,000 tasks, the workload frequency distribution changed
dramatically as shown in Figure 4(b). While we do not know
the processing time of tasks beforehand, we expect their
execution times to decrease monotonically as they are further
decomposed. Indeed, the figure shows that the majority of tasks
run in around 5 seconds, whereas very few need more than 40
seconds. Consequently, there are enough small tasks to keep
all cores busy while the few larger ones are executed. Since
the probability of a large task executing last is low, we expect
good load balance. Figure 4(e) shows the speedup efficiency
using this decomposition. Observe that ACME scales well up
to about 500 cores using this decomposition, almost an order
of magnitude more compared to Figure 4(d).

It is tempting to generate a finer decomposition in order
to scale to more cores. Figure 4(c) shows the workload fre-
quency distribution of our pattern mining query decomposed to
160,000 tasks. The graph resembles a power-law distribution.
Out of the 160,000 generated tasks, very few take 3 to 5
seconds, whereas the vast majority (i.e., around 130,000 tasks)
execute in time close to zero. Unfortunately, most of these
tasks are of useless work that accumulates as overhead. They
represent areas in the search space that would have been pruned
if a coarser decomposition was used. Figure 4(f) shows the
speedup efficiency in this case. ACME cannot scale efficiently
using this decomposition, not even to 2 cores.

846

B. Degree of Parallelism and Decomposition

There is a strong correlation between the speedup efficiency
of a process and its workload frequency distribution. Our
results for pattern mining (dynamic decomposition) are consis-
tent with our molecular docking results (static decomposition).
They follow the same trend, where similar task workload
frequency distributions lead to similar speedup performance.

Degree of parallelism: APlug estimates the number of
cores: (i) that satisfy user constraints (time or budget) and
(ii) at which a parallel system achieves a minimum threshold
of speedup efficiency. APlug simulates parallel execution to
predict the parallel time when using a specific number of cores.
Our models reflect the scheduling mechanism adopted by a
parallel system. For example, a single-queue multiple-server
model is used to simulate centralized dynamic scheduling.
Using our predicted serial and parallel times, we predict
speedup efficiency using Equation 1. Our models capture
workload skewness and achieve high accuracy by drawing a
random sample of the workloads and approximating the actual
workload distribution.

Decomposition: APlug aims at automatically specifying
the near-optimal parameter value for dynamic task decompo-
sition. Therefore, we analyzed the main factors that determine
the quality of a decomposition leading to the efficient utiliza-
tion of resources. Our findings show that a parallel system can
efficiently utilize as many cores as possible for a set of tasks, if
there are: (i) enough tasks per core to achieve high utilization;
(ii) few or no useless tasks to avoid overhead; and (iii) few
or no heavy tasks to avoid workload imbalance. If a heavy
task is scheduled last, performance suffers. However, APlug
will choose a decompositions with many small tasks, where
even the few bulky tasks are not heavy. In Figure 4(b), the
heavy tasks are an order of magnitude lighter than the tasks in
Figure 4(a). This minimizes the negative effects of scheduling
a relatively heavy task last and reduces the probability that this
would happen.

We found that a leptokurtic and positively skewed non-
symmetric distribution reflects the three aforementioned prop-
erties. APlug framework provides an automatic tuning model
that guarantees a minimum threshold for speedup efficiency.
Assuming the given threshold is 0.8, Figure 4(d) shows that
this particular decomposition does not allow this process to
scale efficiently to more than 60 cores. If more cores are
used the total execution time will decrease, but due to load
imbalance many cores will be underutilized. In our example,
if instead of 60 cores we use 480 cores (i.e., 8x increase), the
total execution time drops from 30 minutes to 10 minutes (i.e.,
only 3x improvement).

IV. THE APLUG FRAMEWORK

APlug is a practical and easy to plug framework due to our
novel idea of automatic tuning based on modeling workload
frequency distributions. The performance of parallel systems
is significantly affected by the workload density and skew in
a set of tasks, as discussed in Section III. Our novel idea
facilitates the shift toward truly integrated estimation models,
where regression analysis per parallel system is avoided. APlug
infers the workload frequency distribution to: (i) adapt the
parallelism of the scientific applications that vary dynamically,

Fig. 5. A simple flowchart of the APlug framework.

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

P
D

F

Time (min)

Samples’ Histogram
Estimated PDF

Fig. 6. Estimated probability density function (PDF) for tasks workload
frequency and the histogram from the actual execution times of 160 sample
tasks.

and (ii) tune dynamic process decompositions automatically.
This section presents the workflow and algorithms of APlug.

A. The Framework Overview

An abstract workflow diagram of APlug is shown in Figure
5. APlug’s inputs are user constraints and task decomposition
type. A random sample of tasks from the entire dataset is
executed to find the sample workload (i.e., runtimes). The
decomposition type is either static or dynamic. For a static
decomposition, APlug directly adapts the parallelism. For a
dynamic decomposition, APlug automatically tunes the decom-
position by finding the decomposition parameter leading to the
the highest scalability in terms of number of cores while the
utilization threshold is satisfied.

847

B. Parameterisation of workload frequency distributions

The curve of the workload frequency distribution takes
different shapes for different sets of tasks. The gamma distri-
bution is well known by its shape flexibility and the ability to
give good approximations of workload frequency distributions
[21]. Moreover, our analysis in Section III shows that the
workload frequency distribution of an optimal decomposition
follows a positive gamma distribution. Hence, APlug adopts
the gamma probability density function (PDF) to predict the
workload (runtime) per task. In Section VI, we show that
APlug, based on the gamma distribution, achieves accurate
estimations (with average error below 10%) with distributions
of different shapes.

A gamma distribution Γ is characterized by a shape param-
eter α and a scale parameter β. We use the sample to calculate
approximations for the mean µΓ and standard deviation σΓ of
Γ. Then, we calculate α and β as follows [22]:

α =
µ2

Γ

σ2

Γ

, β =
µΓ

α
(2)

The probability density function (PDF) of Γ is defined as:

Γ(x;α, β) =
βαxα−1e−βx

(α− 1)!
(3)

As an example, consider the same settings as in Figure 4(b).
We draw a random sample of 160 tasks from the 8,000 tasks.
Figure 6 depicts the PDF we arrive to using the samples
histogram. Observe that the PDF of Γ resembles closely the
actual workload frequency distribution in Figure 4(b). Let
Λ(ti, tj) be the expected number of tasks (in the entire space
for a given D) with runtime between ti and tj . Let |D| be
the number of tasks generated by decomposition parameter D.
Given Γ, Λ is calculated as follows:

Λ(ti, tj) = |D|

∫ tj

ti

Γ(x;α, β) dx (4)

C. Degree of Parallelism Estimation

APlug furnishes users with an accurate estimation of the
minimum amount of resources required to process a query
within specific constraints. User constraints may involve the
maximum allowed execution time; maximum amount of core
hours, if the system is deployed in a typical shared research
computing infrastructure; or a limit on the financial cost, if
a commercial cloud computing provider is used. Moreover, a
threshold for minimum speedup efficiency is to be given.

Algorithm 1 describes the degree of parallelism model. It
takes the execution time of each of the tasks in the random
sample and the user constraints as input, and outputs the
number of cores to use, together with the estimated time
and speedup efficiency. APlug estimates serial and parallel
execution to calculate the expected speedup efficiency at a
certain amount of cores, as defined in Equation 1. The serial
time T1 is the summation of the the execution times of all
tasks. The lower bound of runtime for a task is zero, but the

Input: Sample times sample t, user inpt
Output: Suggested no. of cores Cp, estimated parallel time TC

// estimate PDF from sample execution times1

α← (MEAN(sample t)/STDEV(sample t))22

β ← MEAN(sample t)/α3

// predict remaining workload4

if user inpt.Telapsed > 0 then5

SETUPQUEUE(user inpt.Telapsed, user inpt.Ccurr)6

user inpt.Taskstotal ← SIMULATEQUEUE(sample t)7

// predict serial time left8

T1 ←
∞∑

t=0

(2t+1

2
Λ(t, t+ 1))

9

// predict parallel time and utilization10

Cp ← user inpt.Cmax11

while user inpt 6= TRUE do12

DECREMENT(Cp)13

SETUPQUEUE(user inpt, Cp)14

(TC , Cp)← SIMULATEQUEUE(sample t)15

Algorithm 1: DEGREE OF PARALLELISM ALGORITHM

upper bound is unknown. Let x be an integer time unit. Then
T1 is defined as:

T1 =

∞
∑

x=0

2x+ 1

2
Λ(x, x+ 1) (5)

We employ the queuing theory [23] to estimate the parallel
execution time TC . We model the parallel process as a finite-
source queue of n tasks served by C servers (i.e., cores).
Without loss of generality, we assume homogeneous servers.
Since our population is finite, numerically simulating the queue
provides an accurate representation of the real system [24].
APlug implements a discrete event simulator. We start with
all tasks in the queue. The workloads of the tasks follow the
workload frequency distribution of our sample tasks. Equa-
tion 4 is used to create bins of tasks. The servers randomly
consume tasks from different workload bins until all bins are
empty. The output of the simulator is our estimation for the
parallel execution time TC .

Given the expected performance variability on public
clouds [6], users should be able to reevaluate the situation
online and adapt accordingly. Lines 4 to 7 allow our model to
consider elapsed time to account for the expected remaining
workload only. APlug utilizes the workload frequency distri-
bution to: (i) estimate the remaining tasks, and (ii) suggest the
amount of cores to add or remove online. The output of our
model can be used in many ways, such as predicting accurately
the expected financial cost. We present such a case study in
Section VI.

D. Automatic Decomposition

APlug’s automatic decomposition feature is optional. Its
goal is to solve the following optimization problem: Find the

848

Input: Query inputs I and ; threshold SEmin

Output: optimal decomposition param D; no. of cores Cmax

D ← I.Dmin1

Cmax ← 12

while Decomposable do3

// randomly draw x tasks of param D4

sample← RANDOMTASTS(x, D)5

sample times← GETWORKLOADS(sample)6

tC ← ESTSPDUPEFF(sample times, SEmin)7

if tC < Cmax then8

break9

else10

INCREMENT(D)11

Cmax ← tC12

Algorithm 2: AUTOMATIC DECOMPOSITION ALGORITHM

process decomposition that maximizes scalability (i.e., number
of cores) under the constraint that speedup efficiency SE is
over a user specified threshold SEmin. We solve this problem
as follows: (i) Partition the process at a specific parameter
value and draw a random sample of tasks to run. (ii) Estimate
the expected speedup efficiency SE. (iii) Repeat these steps
until we find the decomposition parameter that allows us to
scale to the largest number of cores with SE ≥ SEmin. Our
workload analysis indicates that the best decomposition should
not just provide enough tasks to use more cores but should also
consider the overheads of parallelism to keep efficiency high.
Hence, APlug will indicate to the users the maximum number
of cores they can use for a certain workload ensuring high
utilization of resources.

Algorithm 2 describes our automatic tuning method. For
simplicity, we assume the decomposition parameter is atomic.
In line 1, D is initialized to the minimum decomposition
parameter value I.Dmin. To reduce the overhead of the
automatic tuning method, sample tasks can be generated and
evaluated in parallel (i.e., lines 5 and 6). In practice, the main
loop of the algorithm is executed only a few times before
finding a near-optimal decomposition. If the process is not
decomposable using D the algorithm returns the last working
decomposition parameter. Function ESTSPDUPEFF in line 7
is the heart of the algorithm. Given a decomposition, for a
specific number C of cores, it estimates the expected speedup
efficiency. The function iterates over a range of values for C
and returns the one that achieves the maximum SE for the
given decomposition. Algorithm 2 finds the best decomposition
with a certain margin of error. The sample size is chosen to
bound this error using the equation n >= ((z/e)2)/4, where
z is the z-score for the confidence interval and e is the desired
margin of error [25].

V. APLUG API AND INTEGRATION

The complete C++ source code of APlug, including its
standalone utility program, is implemented in less than 800

class APlug {
public:

void setNumOfTasks(int numOfTasks);

void setSampleSize(int sampleSize);

void loadSamples(double[] sampleTimes);

int changeDecomposition(int last);

int getRecCores(double tLimit, int cLimit);

double getSerialTime(void);

double getParallelTime(int cores);

double getSpeedupEff(int cores);

};

Fig. 7. The APlug C++ API foundation.

lines of code. The framework is available for download2 and
as a public Amazon Machine Image3. This section highlights
the most important aspects of our implementation. We present
the main C++ API and discuss the integration of APlug in
scientific applications. Most APlug methods shown in Figure
7 are implemented and ready to use with any application.

A typical scenario for integrating APlug with an appli-
cation starts by including the APlug class and overriding
changeDecomposition(), if needed. Users with an ap-
plication of a fixed number of tasks do not need to implement
or use this method. If the process can be decomposed dy-
namically, APlug needs to know how different decompositions
are achieved. For example, decomposing an application with
a tree-based search space involves using prefixes to partition
the search space into sub-trees.

APlug uses sample tasks to predict workloads and adapt
parallelism accordingly. The user needs to execute a random
sample of tasks and pass their workloads to the framework us-
ing loadSamples(). The sampled tasks can (and should) be
part of the final results. Calling the method getRecCores()
provides the number of cores needed to meet user constraints.
The rest of the framework methods are provided for users to
use them as needed and to customize their experience.

We integrated APlug with the three scientific applications
discussed in Section II. We did not reuse the samples in
order to minimize code modification. Note that the overhead
of running the sample is minimal compared to the gain from
tuning. In the case of integrating APlug with VinaLC and P-
SSW, only 20 lines of code were added or changed in their
source codes. The method changeDecomposition() was
not used because the number of tasks is fixed. In the case of
ACME, the process decomposition is not fixed. We integrated
APlug with ACME in less than 50 lines of code including
overriding the method changeDecomposition().

The APlug framework comes with a standalone utility
program. This is useful in cases where the application source
code is not available or if code integration is not preferred. The
APlug utility accepts a file of sample tasks workloads and takes
user constraints as input. The utility will output useful statistics
including expected execution times, speedup efficiencies, and
recommended number of cores.

2http://cloud.kaust.edu.sa/pages/aplug.aspx
3Amazon Machine Image ID: ami-df556bb6

849

VI. EVALUATION

Our APlug framework and the datasets detailed below are
available for download online2 and on Amazon EC23. We
evaluate APlug in the three different scientific applications dis-
cussed in Section II. The accuracy of APlug’s predictions and
APlug’s minimal overhead are shown. We conduct sensitivity
analysis experiments to study the effects of the sample size
on APlug. The effective scalability of the applications after
integrating APlug with them is then demonstrated.

A. Experimental Setting

1) Datasets: We used real datasets to test APlug. (i) For
molecular docking, similar to the authors of VinaLC, we dock
lead-like compounds from the ZINC database [26] against
Thermus thermophilus gyrase B4. (ii) For sequence alignment,
71,501 human protein sequences5 and 65,685 random shotgun
sequences6 of Shewanella oneidensis bacteria [27]. (iii) For
pattern mining, 2.6GB DNA7 for the entire human genome.

2) Systems: We used various systems with different archi-
tectures. Namely, we used a supercomputer, a Linux cluster,
and a public cloud cluster. The supercomputer is an IBM Blue
Gene/P with 16,384 quad-core PowerPC processors @850MHz
with a total memory of 64TB. The Linux cluster is an HP sys-
tem of 480 cores @2.1GHz with each 24 cores sharing 148GB
of RAM. The public cloud cluster was rented from Amazon
EC2 and consisted of 40 on-demand M3 large instances8. Each
instance had 2 cores and 7.5GB RAM.

3) Queries: For the molecular docking experiments, we
randomly chose 10,000 lead-like compounds from the ZINC
dataset to dock against Thermus thermophilus gyrase B.
For sequence alignments, we created over 1 million tasks
(1,000,405 pairwise alignments) using 1,415 random Human
protein sequences. All the experiments with VinaLC and P-
SSW were run on the Linux cluster. VinaLC could not run on
the supercomputer because of library incompatibilities and P-
SSW uses architecture specific SIMD operations. In the case
of pattern mining, the number of tasks is not fixed and we test
our decomposition tuning. On EC2, we chose a light pattern
mining query that ends in reasonable time. APlug partitioned
the search space tree of this query to 4,096 tasks (using prefixes
of length 6). For the supercomputer, a pattern mining query
that has enough workload to scale to thousands of cores was
used. This query was decomposed automatically by APlug to
262,144 tasks (using prefixes of length 9).

4) Baseline: The baseline implementation that we compare
to is the naı̈ve solution to the degree of parallelism problem.
Given the runtimes of a sample of the tasks, the serial time is
estimated by multiplying the average sample runtime by the
total number of tasks. The parallel runtime is then calculated
by dividing the estimated serial time by the number of cores.
The samples used are the ones used with APlug and in the
case of decomposition tuning we use APlug’s decomposition.

TABLE I. THE BASELINE METHOD PROVIDES FAIRLY ACCURATE

PARALLEL TIME ESTIMATIONS WHEN TASKS WORKLOADS ARE UNIFORM.
IN THIS EXPERIMENT, P-SSW IS USED TO ALIG 1,415 RANDOM DNA

SHOTGUN SEQUENCES FROM THE SHEWANELLA ONEIDENSIS BACTERIA.
MOST SHOTGUN SEQUENCES HAVE SIMILAR LENGTHS AND TASKS

WORKLOADS ARE CLOSE TO UNIFORM.

Cores
Actual time APlug error Baseline error

(hours) (%) (%)

16 45 0.8 0.9
32 23 0.8 0.8
64 12 0.8 0.9

128 6 0.9 1.0
256 3 0.9 1.0

TABLE II. ACCURACY OF APLUG AND THE BASELINE COMPARED TO

ACTUAL PARALLEL TIMES OF P-SSW ON THE LINUX CLUSTER.

Cores
Actual time APlug error Baseline error

(hours) (%) (%)

16 145 0.1 7.4
32 73 0.1 7.5
64 36 0.2 7.5

128 18 0.2 7.5
256 9 0.3 7.5

B. Accuracy of APlug

It is not difficult to predict runtimes of highly scalable
applications when tasks have similar workloads. Indeed, Table
I shows that the baseline method achieves fair accuracy in
predicting the runtimes of P-SSW up to 256 cores. The query
was to align 1,415 shotgun sequences from the Shewanella
oneidensis bacteria dataset. Over a million tasks are run but
most of the alignments have similar workloads because the
sequences are of similar lengths. While we do not know this
fact in advance, it is risky to use the baseline method. Gener-
ally, it is not common to have queries with uniform workload
frequency distributions in practice. Next, we show queries for
sequence alignment, molecular docking, and pattern mining
where tasks workloads are skewed, which is the common case.

We verify the accuracy of APlug and compare it to the
baseline method on different architectures. For each applica-
tion, we run the same query using different numbers of cores
and compare the actual runtimes with the estimations from
APlug and the baseline method. The query for Table II has
the same number of tasks as in Table I only this time we align
sequences from the human protein dataset, where sequences
are of variable lengths leading to skewed task workloads.
APlug captures workload skewness to better estimate runtimes
and accurately predict speedup efficiencies. Similarly, Tables
III and IV show that APlug significantly outperforms the
baseline method.

Figures 8, 9, and 10 show the actual workload frequencies
and the PDFs APlug used to predict them. Since we care about
the total runtime, the shapes of the actual workload frequencies
and the PDFs need not be similar. The total runtime is a
function of the area under the curves. The values of the corre-
sponding integrals are similar, leading to low estimation errors.
APlug achieves this by implicitly considering the infrastructure
performance properties using the runtimes of the sample tasks.

4http://www.rcsb.org/pdb/explore.do?structureId=1KIJ
5ftp://ftp.ncbi.nih.gov/refseq/H sapiens/mRNA Prot/human.protein.faa.gz
6ftp://ftp.cbcb.umd.edu/pub/data/asmg benchmark/
7http://webhome.cs.uvic.ca/ thomo/HG18.fasta.tar.gz
8http://aws.amazon.com/ec2/instance-types/

850

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40
 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04
 0.045
 0.05

A
ct

u
al

 T
as

k
s

fr
eq

u
en

cy
 (

x
1
0
0
0
)

E
st

im
at

ed
 P

D
F

Workload

Actual Estimated

Fig. 8. P-SSW query from Table II comparing actual workload frequency
distribution and PDF used by APlug.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400
 0
 0.0005
 0.001
 0.0015
 0.002
 0.0025
 0.003
 0.0035
 0.004
 0.0045

A
ct

u
al

 T
as

k
s

fr
eq

u
en

cy
 (

x
1

0
)

E
st

im
at

ed
 P

D
F

Workload

Actual Estimated

Fig. 9. VinaLC query from Table III comparing actual workload frequency
distribution and PDF used by APlug. While a single Gamma distribution can
not have the shape of the actual workload frequency distribution, it captures
workload skewness and approximates the total runtimes accurately.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 10 20 30 40
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

A
ct

u
al

 T
as

k
s

fr
eq

u
en

cy

E
st

im
at

ed
 P

D
F

Workload

Actual Estimated

Fig. 10. ACME query from Table IV comparing actual workload frequency
distribution and PDF used by APlug.

TABLE III. ACCURACY OF APLUG AND THE BASELINE COMPARED TO

ACTUAL PARALLEL TIMES OF VINALC ON THE LINUX CLUSTER.

Cores
Actual time APlug error Baseline error

(hours) (%) (%)

16 31 0.4 8.2
32 16 0.4 8.1
64 8 0.4 7.8

128 4 0.4 7.0
256 2 0.3 5.3

TABLE IV. ACCURACY OF APLUG AND THE BASELINE METHOD

COMPARED TO ACTUAL PARALLEL TIMES OF ACME ON AMAZON EC2.

Cores
Actual time APlug error Baseline error

(minutes) (%) (%)

4 130 0.9 17.8
8 66 0.9 17.9

16 33 0.8 18.1
32 17 1.2 18.8
64 9 1.8 20.3

The next experiment shows the accuracy of APlug decom-
position tuning. Table V shows the speedup efficiencies when
different decompositions are used for our query. APlug chooses
the decomposition that results in the best speedup efficiency
using different numbers of cores. However, the default de-
composition method of ACME fails in most cases because it
considers number of cores to decompose the problem.

Accurate decomposition and runtime prediction saves
money for users of supercomputing centers and clouds. Our
next experiment shows how APlug guides user decisions to
stick to their budget. We decompose and adapt the parallelism
of a pattern mining query given a pricing scheme. The user
needs to mine human DNA for patterns in less than 3 hours and
without spending more than $20. Table VI shows that renting
10 instances meets the budget but not the time constraint.
Similarly, renting 30 instances meets the time constraint but
not the budget. It is interesting that renting more instances, in
this case 40, meets both constraints. It is not straightforward to
arrive at this conclusion without utilizing APlug capabilities.

During execution, APlug guides users if scaling out or in is
desired. Table VII shows that APlug provides good expected
runtimes and speedup efficiencies online. The error in APlug’s
online predictions is slightly higher than its initial run because

TABLE V. THE DIFFERENT SPEEDUP EFFICIENCIES OF ACME ON THE

SUPERCOMPUTER USING DIFFERENT DECOMPOSITIONS. APLUG

CONSISTENTLY CHOOSES THE BEST DECOMPOSITION (256K TASKS).

Cores
Speedup Efficiency wrt #Tasks

16K 64K 256K 1024K

512 0.94 0.97 0.98 0.81
1,024 0.87 0.97 0.97 0.83
2,048 0.83 0.92 0.97 0.83
4,096 0.46 0.76 0.92 0.76
8,192 0.25 0.46 0.76 0.46

TABLE VI. ACCURACY OF THE ESTIMATED PARALLEL TIME (AND

COST) OF ACME ON AMAZON EC2 CLOUD. APLUG IS ABLE TO PREDICT

TIME SO USERS CAN MEET BUDGET AND TIME CONSTRAINTS.

Number of Amazon EC2 Instances
1 10 20 30 40

Cores 2 20 40 60 80
Cost/Hour $0.24 $2.40 $4.80 $7.20 $9.60

Est. Time 2.5 Days 5.9 Hr 3.1 Hr 2.1 Hr 1.5 Hr
Act. Time 2.9 Days 5.1 Hr 4.3 Hr 2.3 Hr 1.6 Hr

Est. Cost $14.40 $14.40 $19.20 $21.60 $19.20
Act. Cost $16.80 $14.40 $24.00 $21.60 $19.20

851

TABLE VII. APLUG PROVIDES USERS WITH ACCURATE PREDICTIONS

FOR ADDING (OR REMOVING) RESOURCES ONLINE. IN THIS EXPERIMENT

2,000 VINALC TASKS ARE STARTED WITH 130 CORES THEN AFTER HALF

THE TASKS WERE DONE, APLUG WAS CONSULTED TO ADD MORE CORES.

Additional Total Time (min) Speedup Efficiency

Cores Actual Predicted Actual Predicted

0 33.23 34.43 0.95 0.92
100 28.85 27.78 0.62 0.64
200 28.17 25.13 0.44 0.49
300 26.80 24.58 0.35 0.38

TABLE VIII. SENSITIVITY ANALYSIS OF THE SAMPLE SIZE USED IN

APLUG TO ESTIMATE THE EXECUTION TIME OF VINALC USING 256

CORES ON THE LINUX CLUSTER. THE ACTUAL TIME WAS OVER 2 HOURS.
THE SAMPLE MARGIN OF ERROR IS BETWEEN 9% AND 3%.

Sample size Sample time APlug error Baseline error

(%) (minutes) (%) (%)

1 2 8.0 13.9
2 3 4.7 10.9
4 5 0.4 5.3
8 10 0.3 4.2

it is difficult to capture the execution of the tasks that are
running during online prediction. Initially, 130 cores were
used. Additional cores were added after half the tasks were
done. Counterintuitively, adding cores at this stage negatively
affects speedup efficiency since the remaining tasks do not
have enough workload to fully utilize a larger number of cores.
In this experiment, adding 300 cores improves the time by less
than 7 minutes at the cost of a drop in efficiency from 0.95 to
0.35. APlug accurately provides online facts for users to make
informed decisions.

C. Sensitivity Analysis for APlug

APlug is expected to be sensitive to the sample size because
it uses sample tasks to build its workload model. We use
random sampling, the simplest form of probability sampling,
where all tasks have the same probability of being in the
sample. Random sampling is preferred in cases where the
information we know about the total population (i.e., tasks)
is little. Statistically, the precision of the estimator given a
large number of total tasks depends on sample size, and not
sample percentage of the total tasks [28]. For example, the
precision of a random sample of 100 tasks from 100,000 tasks
and from a million tasks is the same. For each experiment in
this section, we note the sample margin of error range for a
95% confidence interval.

Tables VIII, IX, and X show that practically acceptable
accuracy is achieved with small sample sizes. The overhead
of running samples increases with sample size but is not
steep. The overhead is basically the runtimes of the sample
tasks, which is dependent on sample workload not only sample
size. The time it takes to run the sample tasks is orders

TABLE IX. SENSITIVITY ANALYSIS OF THE SAMPLE SIZE USED IN

APLUG TO ESTIMATE THE EXECUTION TIME OF P-SSW USING 256 CORES

OF THE LINUX CLUSTER. THE ACTUAL TIME WAS OVER 9 HOURS. THE

SAMPLE MARGIN OF ERROR IS BETWEEN 1% AND 0.3%.

Sample size Sample time APlug error Baseline error

(%) (minutes) (%) (%)

1 5 0.5 7.2
2 11 0.6 7.1
4 22 0.2 7.5
8 44 0.1 7.7

TABLE X. SENSITIVITY ANALYSIS OF THE SAMPLE SIZE USED IN

APLUG TO ESTIMATE THE SERIAL EXECUTION TIME OF ACME ON

AMAZON EC2 CLOUD. THE ACTUAL TIME WAS OVER 8.5 HOURS. THE

SAMPLE MARGIN OF ERROR IS BETWEEN 15% AND 5%.

Sample size Sample time APlug error Baseline error

(%) (minutes) (%) (%)

1 6 13.5 42.0
2 11 11.5 32.4
4 21 1.2 10.8
8 41 1.4 10.2

TABLE XI. SENSITIVITY ANALYSIS OF SAMPLE SIZE IN ACME’S

DECOMPOSITION TUNING. BEST DECOMPOSITION EMPIRICALLY FOUND

TO BE 262,144 TASKS. THE SAMPLE MARGIN OF ERROR IS BETWEEN 21%
AND 7%.

Sample Size Tuning cost Suggested decomposition

(# Tasks) (seconds) (# Tasks)

10 9 16,384
20 11 16,384
40 7 65,536
80 4 262,144

160 6 262,144
320 12 262,144

of magnitude lower than the total runtime. The accuracy of
APlug is significantly better than the baseline even for small
samples because APlug captures the workload skewness and
irregularity of tasks workloads.

The next experiment studies APlug’s decomposition tuning
with respect to different sample sizes. We empirically find
the best decomposition by exhaustively using different prefix
lengths to partition the search space tree of a pattern mining
query. Decomposing the example process to 262,144 tasks
creates the most fine-grained tasks with minimal useless work.
Table XI shows that APlug finds the optimal decomposition
with small sample sizes. The tuning time is minimal, especially
when compared to the full query execution time.

D. Effective Scalability using APlug

Guided by APlug; P-SSW, VinaLC, and ACME adapt their
parallelism to achieve high speedup efficiencies with minimal
overhead. Tables XII, XIII, and XIV show that APlug is able
to accurately adapt the parallelism of different applications
on different architectures. Due to time constraints, speedup
efficiencies are calculated according to a 15-core system for
VinaLC and P-SSW and to a 256-core system for ACME. No
manual tuning for ACME on the supercomputer was needed
as its decomposition is automatically tuned by APlug. VinaLC
was not run on the supercomputer because of library incom-
patibilities. P-SSW uses architecture specific SIMD operations
that prevents it from running on the supercomputer.

TABLE XII. APLUG ACCURATE PREDICTION FOR VINALC ON THE

LINUX CLUSTER.

Cores
Predicted Actual

Speedup Efficiency Speedup Efficiency

15 1.00 1.00
30 0.99 0.98
60 0.99 0.97

120 0.99 0.95
240 0.98 0.94
480 0.96 0.93

852

TABLE XIII. APLUG ACCURATE PREDICTION FOR P-SSW ON THE

LINUX CLUSTER.

Cores
Predicted Actual

Speedup Efficiency Speedup Efficiency

15 1.00 1.00
30 0.99 0.98
60 0.99 0.98

120 0.99 0.96
240 0.98 0.95
480 0.97 0.93

TABLE XIV. ACME IS ABLE TO SCALE TO 16,384 CORES WITH HIGH

SPEEDUP EFFICIENCY ON THE SUPERCOMPUTER USING APLUG’S

AUTOMATIC DECOMPOSITION TUNING. APLUG ACCURATELY PREDICTS

SPEEDUP EFFICIENCY OF ACME USING THOUSANDS OF CORES.

Cores
Predicted Actual

Speedup Efficiency Speedup Efficiency

256 1.0 1.00
1,024 0.99 0.99
2,048 0.99 0.98
4,096 0.98 0.96
8,192 0.98 0.91

16,384 0.97 0.98

VII. RELATED WORK

Automatic tuning is needed for applications that handle
big data and scale out on large infrastructures. The de facto
application is data analytics using MapReduce or MPI-based
systems. In MapReduce frameworks, data analytics is accom-
plished using multiple iterations. PREDIcT [29] introduced
an experimental methodology for estimating the number of
iterations and the time of each iteration in iterative analytics.
PREDIcT does not estimate the number of machines required
to meet user-specific constraints or suggest the best decompo-
sition into a certain number of iterations. Both problems are
challenging due to variance in iteration times. We address these
problems for bag-of-tasks MPI-based applications, where the
variance among tasks is even higher. Starfish [30] automati-
cally tunes a Hadoop cluster to enhance its performance for
data analytics. It uses dynamic instrumentation to profile jobs
and a what-if engine to predict performance. Cumulon [31]
is aimed specifically at statistical analysis on public clouds.
Our work targets different large-scale infrastructures, such as
supercomputers, and suggests resources based on workload.

Resource allocation and scheduling are to provision
resources and balance the load on them. Middleware solutions,
such as Falkon [32], were used to manage resources for ap-
plications with many-tasks. Recent work provided middleware
solutions with cost-efficient algorithms for tasks assignment
across multiple clouds [33]. Middleware solutions are in-
frastructure and provider specific. Applications require code
modification to utilize such services. To deal with trailing
tasks, the number of workers can be shrunk at some point
to keep utilization high [34]. BaTS [35] replicates trailing
tasks on idle cores to increase the chances of completing them
faster. Resource allocation is done by service providers and
scheduling is done either by applications or middleware. In this
paper, we consider these problems from a user point of view.
Our work is orthogonal to resource allocation and scheduling
as we decide the appropriate number of cores to use for an
instance of a parallel application.

Runtime and scalability estimation are used to assist
the decision making processes of schedulers and resource
management modules [36]. One way of estimating task runtime

is to analyze and profile code [37]. Compiler knowledge can be
used to extract performance metrics [38]. Full code needs to be
analyzed in order to create and validate scalability predictive
models. The inputs for such models are low level system
metrics, such as communication latencies, data type sizes,
and memory contention. A more practical approach is to use
statistical modeling to estimate runtime and scalability [39].
Bayesian and neural networks were used in grids to learn the
execution times of running tasks [40]. Nevertheless, existing
execution time estimators for large-scale applications were
shown to be ineffective in clouds [41]. We model the workload
distribution of tasks using a sample run. Our model does not
require code profiling and is not infrastructure specific. APlug
is less aggressive and requires no or minimal coding.

Performance modeling is a useful tool to optimize existing
systems and design future ones [42]. Works on performance
prediction are mostly specific to certain applications and ar-
chitectures requiring code inspection and instrumentation [43].
Regression techniques were used to estimate the performance
of scientific workflows in heterogeneous environments [44].
Recently, a framework for predicting application performance
on systems with hardware accelerators was introduced [45].
Our goal is to meet user constraints for a specific run of
an bag-of-tasks application. We implicitly capture hardware
performance in order to automatically tune the degree of
parallelism and problem decomposition.

In this paper, we are not concerned with allocation and
scheduling strategies at the infrastructure level. We do not mea-
sure nor optimize performance of applications or computing
infrastructures. We propose a novel and generic framework to
predict the appropriate degree of parallelism for a particular
process based on user constraints with minimal overhead.

VIII. CONCLUSION

This paper presented APlug, an automatic tuning frame-
work for large-scale parallel applications with many inde-
pendent tasks. APlug adapts the degree of parallelism and
automatically decomposes the parallel process to enable users
to achieve efficient utilization of CPU resources. We studied
the correlation between the workload frequency distributions
of a set of tasks and the resource utilization. Our models are
based on this correlation. Therefore, APlug facilitates the shift
towards truly integrated estimation models.

Our experiments show the viability of our framework for
molecular docking, sequence alignment, and pattern mining
using 16,384 cores in a supercomputer, 480 cores in a Linux
cluster, and 80 cores from a public cloud. APlug estimates
the serial and parallel times to suggest the best degree of
parallelism in very short time with less than 10% error.
Users can use APlug to optimize various quantities; such as,
execution time and financial cost.

While many commercial and scientific applications have
independent tasks, our future work will target tasks with inter-
dependencies. It is challenging to predict dependencies because
they differ according to data size, decomposition, and execu-
tion environment. We attempt to address tasks dependencies
by two ways: profiling the code, and collecting data during
runtime. Machine learning techniques can then be used to
construct models for typical application behaviors.

853

ACKNOWLEDGMENT

For computer time, this research used the resources of the
Supercomputing Laboratory at King Abdullah University of
Science & Technology (KAUST) in Thuwal, Saudi Arabia.

REFERENCES

[1] X. Zhang, S. E. Wong, and F. C. Lightstone, “Message passing interface
and multithreading hybrid for parallel molecular docking of large
databases on petascale high performance computing machines,” Journal

of Computational Chemistry, vol. 34, no. 11, 2013.

[2] C. Wu, A. Kalyanaraman, and W. Cannon, “pGraph: Efficient parallel
construction of large-scale protein sequence homology graphs,” Parallel

and Distributed Systems, IEEE Trans. on, vol. 23, no. 10, 2012.

[3] M. Sahli, E. Mansour, and P. Kalnis, “Parallel motif extraction from
very long sequences,” in Proc. of the ACM Intl. Conf. on Information

& Knowledge Management, 2013.

[4] G. R. Andrews, “Paradigms for process interaction in distributed
programs,” ACM Computing Surveys (CSUR), vol. 23, no. 1, 1991.

[5] S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado,
H. Duran, and X. Collazo-Mojica, “A modeling approach for estimating
execution time of long-running scientific applications,” in Parallel and

Distributed Processing. IEEE Intl. Symposium on, 2008.

[6] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements
in the cloud: observing, analyzing, and reducing variance,” Proc. of the

VLDB Endowment, vol. 3, no. 1-2, 2010.

[7] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth, “SSW library: An
simd smith-waterman c/c++ library for use in genomic applications,”
PLoS ONE, vol. 8, no. 12, 2013.

[8] T. Lengauer and M. Rarey, “Computational methods for biomolecular
docking,” Current Opinion in Structural Biology, vol. 6, no. 3, 1996.

[9] H. Li, A. Liu, Z. Zhao, Y. Xu, J. Lin, D. Jou, and C. Li, “Fragment-based
drug design and drug repositioning using multiple ligand simultaneous
docking (MLSD): identifying celecoxib and template compounds as
novel inhibitors of signal transducer and activator of transcription 3
(stat3),” Journal of medicinal chemistry, vol. 54, no. 15, 2011.

[10] A. L. Hopkins and C. R. Groom, “The druggable genome,” Nature

reviews Drug discovery, vol. 1, no. 9, 2002.

[11] P. Kirkpatrick and C. Ellis, “Chemical space,” Nature, vol. 432, no.
7019, 2004.

[12] O. Trott and A. J. Olson, “AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization,
and multithreading,” Journal of comp. chemistry, vol. 31, no. 2, 2010.

[13] C. Sander and R. Schneider, “Database of homology-derived protein
structures and the structural meaning of sequence alignment,” Proteins:

Structure, Function, and Bioinformatics, vol. 9, no. 1, 1991.

[14] D. W. Mount, Sequence and genome analysis, 2004.

[15] I. Elias, “Settling the intractability of multiple alignment,” Journal of

Computational Biology, vol. 13, no. 7, 2006.

[16] M. Farrar, “Striped smith–waterman speeds database searches six times
over other simd implementations,” Bioinformatics, vol. 23, no. 2, 2007.

[17] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, 1981.

[18] X. Xie, T. S. Mikkelsen, A. Gnirke, K. Lindblad-Toh, M. Kellis, and
E. S. Lander, “Systematic discovery of regulatory motifs in conserved
regions of the human genome, including thousands of ctcf insulator
sites,” Proc. of National Academy of Sciences, vol. 104, no. 17, 2007.

[19] A. Mueen and E. Keogh, “Online discovery and maintenance of time
series motifs,” in Proc. of the ACM Intl. Conf. on Knowledge Discovery

and Data Mining, 2010.

[20] K. Saxena and R. Shukla, “Significant Interval and Frequent Pattern
Discovery in Web Log Data,” Intl. Journal of Computer Science Issues,
vol. 7, no. 1(3), 2010.

[21] A. O’Connor, Probability distributions used in reliability engineering,
2011.

[22] A. Papoulis and S. U. Pillai, Probability, random variables, and

stochastic processes, 2002.

[23] L. Kleinrock, Queueing Systems, 1975, vol. I: Theory.

[24] D. Meisner and T. F. Wenisch, “Stochastic queuing simulation for data
center workloads,” in Exascale Evaluation and Research Techniques

Workshop, 2010.

[25] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical methods for rates and
proportions. John Wiley & Sons, 2013.

[26] J. J. Irwin and B. K. Shoichet, “Zinc-a free database of commercially
available compounds for virtual screening,” Journal of chemical infor-

mation and modeling, vol. 45, no. 1, 2005.

[27] J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson,
T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe et al., “Genome
sequence of the dissimilatory metal ion–reducing bacterium shewanella
oneidensis,” Nature biotechnology, vol. 20, no. 11, 2002.

[28] S. Lohr, Sampling: design and analysis, 2009.

[29] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki, “PREDIcT:
Towards predicting the runtime of large scale iterative analytics,” Proc.

VLDB Endow., vol. 6, no. 14, pp. 1678–1689, Sep. 2013.

[30] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics.” in CIDR,
vol. 11, 2011, pp. 261–272.

[31] B. Huang, S. Babu, and J. Yang, “Cumulon: Optimizing statistical data
analysis in the cloud,” in Proc. of the 2013 ACM SIGMOD Intl. Conf.

on Management of Data, 2013, pp. 1–12.

[32] I. Raicu, I. Foster, M. Wilde, Z. Zhang, K. Iskra, P. Beckman, Y. Zhao,
A. Szalay, A. Choudhary, P. Little, C. Moretti, A. Chaudhary, and
D. Thain, “Middleware support for many-task computing,” Cluster

Computing, vol. 13, no. 3, 2010.

[33] M. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya, “Randomized
approximation scheme for resource allocation in hybrid-cloud environ-
ment,” The Journal of Supercomputing, 2014.

[34] T. G. Armstrong, Z. Zhang, D. S. Katz, M. Wilde, and I. T. Foster,
“Scheduling many-task workloads on supercomputers: Dealing with
trailing tasks,” in Many-Task Computing on Grids and Supercomputers,

Workshop on, 2010.

[35] A.-M. Oprescu, T. Kielmann, and H. Leahu, “Stochastic tail-phase
optimization for bag-of-tasks execution in clouds,” in Utility and Cloud

Computing, Intl. Conf. on, 2012.

[36] M. Tao, S. Dong, and L. Zhang, “A multi-strategy collaborative predic-
tion model for the runtime of online tasks in computing cluster/grid,”
Cluster Computing, vol. 14, no. 2, 2011.

[37] M. Kiran, A.-H. A. Hashim, L. M. Kuan, and Y. Y. Jiun, “Execution
time prediction of imperative paradigm tasks for grid scheduling opti-
mization,” Int J Comput Sci Netw Secur, vol. 9, no. 2, 2009.

[38] C. Mendes and D. Reed, “Integrated compilation and scalability anal-
ysis for parallel systems,” in Parallel Architectures and Compilation

Techniques, 1998. Proc.. 1998 Intl. Conf. on, 1998.

[39] T. Miu and P. Missier, “Predicting the execution time of workflow ac-
tivities based on their input features,” in High Performance Computing,

Networking, Storage and Analysis (SCC), SC Companion, 2012.

[40] R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan, and T. Fahringer,
“A hybrid intelligent method for performance modeling and prediction
of workflow activities in grids,” in Cluster Computing and the Grid,

2009. CCGRID ’09. 9th IEEE/ACM Intl. Symposium on, 2009.

[41] J. Delgado, A. Eddin, M. Adjouadi, and S. Sadjadi, “Paravirtualization
for scientific computing: Performance analysis and prediction,” in High

Performance Computing and Communications, Intl. Conf. on, 2011.

[42] L. Carrington, M. Laurenzano, and A. Tiwari, “Characterizing large-
scale hpc applications through trace extrapolation,” Parallel Processing

Letters, vol. 23, no. 04, 2013.

[43] D. J. Kerbyson, K. J. Barker, D. S. Gallo, D. Chen, J. R. Brunheroto,
K. D. Ryu, G. L.-T. Chiu, and A. Hoisie, “Tracking the performance
evolution of blue gene systems,” in Proc. of the 28th Intl. Supercom-

puting Conf., 2013.

[44] Q. Wu and V. Datla, “On performance modeling and prediction in
support of scientific workflow optimization,” in Services, IEEE World

Congress on, 2011.

[45] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and
S. Poole, “Modeling and predicting performance of high performance
computing applications on hardware accelerators,” Intl. Journal of High

Performance Computing Applications, vol. 27, no. 2, 2013.

854

