
DATA CACHING ON MOBILE DEVICES
The Experimental MyMIDP Caching Framework

Hagen Höpfner and Sebastian Wendland and Essam Mansour
International University in Germany, Campus 3, 76646 Bruchsal, Germany
hoepfner@acm.org, sebastian.wendland@i-u.de, essam.mansour@acm.org

Keywords: Mobile Information Systems, Data Caching, MIDP, Database Connectivity, MySQL

Abstract: Data caching is an appropriate technique for reducing wireless data transmissions in mobile information sys-
tems. The literature describes numerous caching approaches on a theoretical level. Semantic, preemptive, or
context aware caches are discussed but not implemented for mobile devices even evaluated in real applications.
The problem here is the complexity of data management tools.Software for mobile devices must consider the
limited footprint of the used hardware as well as the restrictions of the application programming interfaces. In
this poster paper we describe the caching framework of our MyMIDP database driver. The framework pro-
vides interfaces that allow to implement the caching approaches discussed in the literature and to test them on
MIDP 2.0 enabled mobile devices in a MySQL environment. Hence, we provide researchers with a necessary
tool for proofing the efficiency of their caches.

1 INTRODUCTION

Nowadays data access is almost possible every-
where and at any time. Mobile information systems
(mIS) use wireless links for data communication.
Current technologies like UMTS or wireless LAN
provide high transmission rates, and flat rate contracts
reduce the monetary costs. However, wireless data
transmission is energy intensive, and using it reduces
the up-time of mobile devices drastically. One solu-
tion to this problem is to cache data once it has been
received. The literature on mIS focuses on semantic
caching. At this, query results are completely stored
and indexed using the corresponding query (Keller
and Basu, 1996; Lee et al., 1999; Ren and Dunham,
1999). This allows for analyzing the cache content.
In the best case new queries can be answered with-
out communication with the server. To a certain de-
gree it is also possible to supplement cached data to
answer a query (Godfrey and Gryz, 1999; Höpfner
and Sattler, 2003; Ren and Dunham, 2003). In addi-
tion to this semantic caches even more enhanced ap-
proaches have been researched in the context of mIS.
Preemptive caches, a technology that is also known as
“data hoarding”, (Peissig, 2004; Kubach and Rother-

mel, 2001; Liu et al., 1996) use query rewriting tech-
niques in order to cache data before it is explicitly
used. This increases the probability of re-usability of
the cache content. Context aware caches (Ren and
Dunham, 2000; Zheng et al., 2002) take the context
of the usage of the system into account when decid-
ing upon caching and/or replacing data.

However, almost all of these ideas were discussed
but not implemented for mobile devices or even eval-
uated in real applications. The challenge addressed in
this paper was to provide researchers with a tool for
proofing the efficiency of their caches while consid-
ering the limited footprint of mobile devices and the
restrictions of the available application programming
interfaces. Taking this into account, we developed a
caching framework for implementing various caching
approaches. It is an extension to our MyMIDP
(Höpfner et al., 2009a; Höpfner et al., 2009b) driver
that allows for directly accessing MySQL databases
from MIDP 2.0 enabled mobile devices.

The remainder of this poster paper is structured as
follows: Section 2 presents the caching extension of
the MyMIDP driver. Section 3 illustrates the usage
of the caching framework. Section 4 concludes this
short paper and gives an outlook on future research.



start

initialize connection
(and cache)

create statement

statement
cached?

retrieve from
database

retrieve from
cache

store in cache

internal
postprocessing

process
result set

close connection
(and cache)

end

no

yes

extended
’database

querying’step

Figure 1: Cache framework general workflow

2 THE MYMIDP CACHE
EXTENSION

The MyMIDP cache extension transparently ex-
tends the MyMIDP driver with a caching system. It
provides local data caching for database query result
sets, thus reducing the mobile device’s dependency
on unreliable and low bandwidth connections for data
transfer and, therefore, saving energy.

Here, transparency means that an application does
not notice the difference between a cached and a not
cached connection, or the difference between a result
set from the database and one from the cache. As the
workflow in Figure 1 shows, most of the caching logic
is hidden in the normal “database querying” step and
is thus not visible to the user.

Overall, the caching workflow works as follows:
If the result set of a SQL statement is found in the

Listing 1: FIFO Cache Replacement
public interface CacheStrategy
{

public String processQuery(String query)
throws SQLException;

public String cacheMiss(String query) throws
SQLException;

public CachedResultSet postProcessQuery(String
query, CachedResultSet result)

throws SQLException;
}

Listing 2: FIFO Cache Replacement
public interface CacheReplacementStrategy
{

public Vector sessionStart(Enumeration
cacheContent);

public CacheEntry newEntry(Enumeration
cacheContent , CacheEntry newEntry);

public boolean sessionEnd();
}

cache, it is loaded, processed and returned to the
user without the need of any communication with the
database server. Otherwise, the statement is executed
and its result set cached. On default the driver uses a
per-statement caching approach with a ten entry cache
and a first-in, first-out (FIFO) replacement strategy.

All cached data is kept in MIDP’s record man-
agement system (RMS), a nonvolatile collection of
records of binary data. A database result set is seri-
alized into a set of records (one record for each row
in the result set) and written to a record store. A cen-
tral cache handler is responsible for tracking the re-
sult sets and can retrieve them as required. There are
two reasons for this approach. First, the MIDP stan-
dard does not define a file-access API. Second, mobile
devices only have a few hundred kilobytes of main
memory, prohibiting an in-memory cache.

3 CACHE CUSTOMIZATION

The driver defaults to a simple per-statement
caching with a FIFO queue. However, the frame-
work provides two extension points for application
programmers to change this default behavior. Utiliz-
ing them allows to implement more enhanced caching
approaches as discussed in Section 1.

The first extension point provides a way to cus-
tomize the caching strategy – the way the driver de-
cides what to store in the cache. Thesecondone deals
with cache replacement – the way the cache is kept
up-to-date. Both extension points are implemented as
Java interfaces (cf. Listings 1 and 2) and are set dur-
ing the driver’s initialization phase.



3.1 Cache Strategy

The cache strategy controls the way the driver de-
cides what to store in the cache. This is accomplished
via three lifecycle methods which are called during
the execution of an SQL statement. These meth-
ods roughly correspond to the stages in the workflow
shown in Figure 1.

Before a statement is executed, the driver scans
through the cache index to check, whether the state-
ment is already cached or not. This is preceded by a
call to theprocessQuery method, which determines
the cache index key from the SQL statement.

If the search for the key comes up empty, the
cacheMiss method is called. The task of this method
is to modify the original SQL statement into the SQL
statement required1 by the caching strategy, which is
then send to the MySQL server instead of the origi-
nal statement. The produces result set is then added
to the cache, using the cache key provided by the
processQuery method.

After the driver finished creating a result set, either
from cache or from the remote database, it is post-
processed by thepostProcessQuery method. The
task of this method is to create a result set that is iden-
tical to the one which would have been created with-
out the use of caching, thus ensuring transparency.
The new result set is then passed to the application.

A preemptive cache example: To show the capa-
bilities of this interface, lets have a look at how the
included preemptive caching strategy is implemented.
It uses the idea of expanding the column selections
of the SQL statement to include all columns, leaving
the other clauses untouched (i.e. aSELECT a, b, c
FROM xyz becomes aSELECT * FROM xyz).

First, theprocessQuery method uses theFROM
(and followingWHERE, GROUP BY . . . ) clause as cache
index key. It simply cuts the front of SQL statement
off and returns the part beginning at theFROM iden-
tifier (i.e. a SELECT a, b, c FROM xyz becomes
xyz). When the entry is not found, thecacheMiss
method simply takes the result of theprocessQuery
method and adds aSELECT * to its beginning, thus
creating a valid SQL query which is then send to
the database server. Finally, thepostProcessQuery
method creates a new result set based on the origi-
nal query. For each column definition in the original
SQL statement the corresponding column from the
database result set is selected and added to the new
one. Afterwards, eventual renaming is applied where
necessarry (as defined by SQLAS clauses). Finally,
the new result set is returned to the client.

1e.g. for enabling preemptive caching

Of course, this kind of caching can fail quite eas-
ily, for example with the use of SQL functions or
joins. However, the application developer knows the
properties of the strategy used in his application and
can thus write the SQL statements in a more robust
way. Also, there is always the option of not us-
ing caching for some statements. Furthermore, most
problems can be avoided with a more intelligent SQL
analysis. However, please note that the current ver-
sion of MIDP does not implement any regular expres-
sion engine, a developer must hence implement his
own, a comprehensive undertaking in it’s own.

3.2 Cache Replacement Strategy

The cache replacement strategy controls the actual
content of the cache. This is done via the three
methods listed in Listing 2. ThesessionStart and
sessionEnd methods are both only called once dur-
ing the drivers lifecycle, namely during the initial-
ization and termination phases, respectively. The
newEntry method on the other hand is called every
time the cache content is to be modified.

During the initialization phase of the driver,
the cache content index is read from the RMS
by the cache manager and is then passed to the
sessionStart method of the cache replacement
strategy. This method identifies the obsolete cache
entries and returns them in order to be deleted. Simi-
larly, thesessionEnd method is called during driver
shutdown, indicating whether or not the cache should
be cleared or not. Overall, the job of these two meth-
ods is to move the cache into a valid state. For in-
stance, because the default FIFO strategy indicates a
cache flush during driver shutdown, it also marks the
entire cache content for deletion during initialization.

The task of thenewEntry method, on the other
hand, is to manage the cache content. It is called
whenever a new entry is to be added to the cache and
identifies at most one cache entry which is to be re-
moved from the cache. The default FIFO strategy, for
instance, does return the oldest cache entry once the
cache reached a predefined size of ten entries.

4 CONCLUSIONS AND
OUTLOOK

This paper presented our caching framework for
mobile devices. It is an extension for the MyMIDP
database driver for MIDP 2.0 compatible devices. As
mentioned in Section 1 we had to consider device and
API limitations during the design and development
process. The given goals were reached. Our current



development version of the MyMIDP driver (incl. the
described cache implementations) has a footprint of
27kB, only. The caching framework provides flexible
and transparent data caching for database result set.

For testing purposes we implemented only one
straight forward caching strategy. However, more en-
hanced approaches like semantic, preemptive or con-
text aware caches can also be implemented with our
framework. Therefore, future areas of research in-
clude also the implementation of a MIDP 2.0 com-
patible SQL analysis library that is necessary for an-
alyzing queries. Also, given the current rapid growth
in mobile device capabilities, a memory based cache
will sooner or later move into the area of feasibility.

The final goal is to provide a database framework
similar to the capabilities of the standard Java imple-
mentation (i.e. Java SE).

Note: The GPL lizensed MyMIDP source code as
well as our proof-of-concept MySQL client for mo-
bile phones are available online athttp://it.i-u.
de/dbis/myMIDP.

REFERENCES

Godfrey, P. and Gryz, J. (1999). Answering queries
by semantic caches. In Bench-Capon, T., Soda,
G., and Tjoa, A. M., editors,Database and Ex-
pert Systems Applications: Proceedings of the
10th International Conference, DEXA’99, vol-
ume 1677 ofLNCS, pages 485–498, Heidelberg.
Springer-Verlag.

Höpfner, H. and Sattler, K.-U. (2003). Towards
Trie-Based Query Caching in Mobile DBS. In
König-Ries, B., Klein, M., and Obreiter, P., edi-
tors,Post-Proceedings of the Workshop Scalabil-
ity, Persistence, Transactions - Database Mech-
anisms for Mobile Applications, number P-43
in LNI, pages 106–121. Gesellschaft für Infor-
matik, Köllen Druck+Verlag GmbH.

Höpfner, H., Schad, J., Wendland, S., and Man-
sour, E. (2009a). MyMIDP: An JDBC driver
for accessing MySQL from mobile devices. In
Chen, Q., Cuzzocrea, A., Hara, T., Hunt, E.,
and Popescu, M., editors,Proceedings of the The
First International Conference on Advances in
Databases, Knowledge, and Data Applications
(DBKDA 2009), March 1-6, 2009, Cancun, Mex-
ico, pages 74–80. IEEE Computer Society.

Höpfner, H., Schad, J., Wendland, S., and Mansour,
E. (2009b). MyMIDP and MyMIDP-Client:
Direct Access to MySQL Databases from Cell

Phones (Demo). In Freytag, J.-C., Ruf, T.,
Lehner, W., and Vossen, G., editors,Proceedings
of the 13. Conference on Business, Technology,
and Web, March 2-6, 2009, M̈unster, Germany,
volume P-144 ofLecture Notes in Informat-
ics (LNI) - Proceedings, pages 604–607, Bonn,
Germany. Gesellschaft für Informatik, Köllen
Druck+Verlag GmbH.

Keller, A. M. and Basu, J. (1996). A predicate-based
caching scheme for client-server database archi-
tectures.The VLDB Journal, 5(1):35–47.

Kubach, U. and Rothermel, K. (2001). Exploiting lo-
cation information for infostation-based hoard-
ing. In Rose, C., editor,Proceedings of the
7th Annual International Conference on Mobile
Computing and Networking, pages 15–27. SIG-
MOBILE, ACM Press.

Lee, K. C. K., Leong, H. V., and Si, A. (1999). Se-
mantic query caching in a mobile environment.
ACM SIGMOBILE Mobile Computing and Com-
munications Review, 3(2):28–36.

Liu, G., Marlevi, A., and Maguire, G. (1996). A mo-
bile virtual-distributed system architecture for
supporting wireless mobile computing and com-
munications.Wireless Networks, 2(1):77–86.

Peissig, J. (2004). guidePort – An Information
and Guidance System. In Kyamakya, K., ed-
itor, WPNC 04 Proceedings, number 0.1 in
Hannoversche Beiträge zur Nachrichtentechnik,
pages 1–17, Aachen. NICCIMON, IEEE, VDI,
Shaker Verlag GmbH.

Ren, Q. and Dunham, M. H. (1999). Using clustering
for effective management of a semantic cache in
mobile computing. In Banerjee, S., Chrysanthis,
P. K., and Pitoura, E., editors,Proceedings of the
1st ACM International Workshop on Data Engi-
neering for Wireless and Mobile Access, pages
94–101, New York, NY, USA. ACM Press.

Ren, Q. and Dunham, M. H. (2000). Using seman-
tic caching to manage location dependent data
in mobile computing. InMobiCom ’00: Pro-
ceedings of the 6th annual international con-
ference on Mobile computing and networking,
pages 210–221. ACM.

Ren, Q. and Dunham, M. H. (2003). Semantic
Caching and Query Processing.Transactions on
Knowledge and Data Engineering, 15(1):192–
210.

Zheng, B., Xu, J., and Lee, D. (2002). Cache Invali-
dation and Replacement Strategies for Location-
Dependent Data in Mobile Environments.IEEE
Transactions on Computers, pages 1141–1153.


