
CHOOSING THE ”BEST” SORTING ALGORITHM FOR OPTIMAL
ENERGY CONSUMPTION

Christian Bunse and Hagen Höpfner and Suman Roychoudhury and Essam Mansour
International University in Germany

Campus 3; 76646 Bruchsal; Germany
Email: FIRSTNAME.LASTNAME@i-u.de

Keywords: Energy Awareness, Software Engineering, Adaptivity, Mobile Information Systems

Abstract: Reducing energy consumption of mobile systems in order to prolong their operating time has been an inter-
esting research topic over the past several years. Such systems are typically battery powered. Hence, their
uptime depends on the energy consumptions of the used components. By applying novel strategies that allow
systems to dynamically adapt at runtime can be effectively used to reduce energy consumption. The focus of
this paper is based on a case study that uses an energy management component that can dynamically choose
the “best” sorting algorithm duing a multi-party mobile communication. The results indicate that Insertionsort
is the most optimal sorting algorithm when in comes to saving energy.

1 INTRODUCTION

Mobile and embedded devices become more and
more important in all areas of the daily life. Nowa-
days, they form the basis for the ubiquitous or perva-
sive computing paradigm. Information is accessible
everywhere at any time via mobile phones, small sen-
sors collectively measure environmental parameters,
and micro controller based computers are embedded
in many devices starting from toys and ending with
cars or air planes. In fact, the landscape of electronic
computing changes dramatically. Unfortunately, all
these small components have in common the need for
a power supply. As smaller the device is, as more the
uptime depends of the efficient usage on the limited
resource energy. Hence, all parts of a mobile or em-
bedded system have to be energy aware.

Researchers spend much effort to optimize the
hardware’s energy consumptions. Only little research
has been done regarding the energy efficient usage
of hardware by optimizing the underlying software.
The aspect of software optimization is addressed in
this paper. Devices contain several hardware com-
ponents (e.g. CPU, external memory, communi-
cation devices), which have different levels of en-
ergy consumption. Therefore, the software must be
able to adapt itself to meet the underlying user re-
quirements while conserving maximum energy. In
previous works (Höpfner & Bunse 2007) we there-

fore introduced the concept of resource substitu-
tion. Preliminary results (Bunse, Höpfner, Mansour
& Roychoudhury 2009) have shown that different im-
plementations of algorithms have varied outcome on
energy consumption. In particular, we implemented
various sorting algorithms because sorting efficiency
is relevant to almost all applications. Furthermore,
many database management algorithms that imple-
ment join (e.g. Sort-Merge-Join) or set operations im-
plicitly use sorting algorithms. Our experiments re-
vealed that memory intensive implementations con-
sumed much more energy than in-place implemen-
tations. However, if processing speed is given pri-
ority over energy, Insertionsort performs slower than
Quicksort, thus resulting in a longer wait for obtain-
ing the desired result. Therefore the question is, how
much data can be sorted by an algorithm implementa-
tion keeping an optimal balance between enrgy com-
sumption and processing speed.

In this paper we present our approach for energy
saving software by choosing appropriate algorithms.
Based on experimental results we introduce trend
functions for each implementation of the research
sorting algorithms. These trend functions are then
used in order to decide on which algorithm to use
under certain conditions or based on the users needs
(faster speed vs. saving energy). Furthermore, we de-
scribe a dynamic optimization approach that changes
the used implementation at runtime.

The remainder of this paper is structured as fol-
lows: Section 2 describes the related work. Section 3
briefly introduces the researched sorting algorithms.
Section 4 introduces the optimizer component and the
trend functions. Section 5 explains the experimental
setup and the experiments performed as proof of con-
cept. Section 6 includes the interpretation of the ex-
perimental results. Section 7 discusses the validity of
these results. Section 8 summarizes and concludes the
paper and gives an outlook to future research.

2 RELATED WORK

Due to the orientation towards mobile- and
embedded-based systems, several research projects
have been conducted regarding the topic of energy
consumption. Optimizing energy consumption is,
thus, one of the most fundamental factors for an
efficient battery-powered system. Research on en-
ergy consumption falls into one of the following cat-
egories: (1) Hardware, or (2) Software (Jain, Mol-
nar & Ramzan 2005). Research that belongs to
the hardware category, attempts to optimize the en-
ergy consumption by investigating the hardware us-
age, such as (Chen & Thiele 2008, Liveris, Zhou
& Banerjee 2008), and innovating new hardware de-
vices and techniques, such as (Tuan, Kao, Rahman,
Das & Trimberger 2006, Wang, French, Davoodi &
Agarwal 2006). Research in second category attempts
to understand how the different methods and tech-
niques of software affect energy consumption. Re-
search in this category can be further classified ac-
cording to the main factors affecting energy consump-
tion: networking, communication, application nature,
memory management, and algorithms. Concerning
networking work such as (Feeney 2001, Senouci &
Naimi 2005), provide new routing techniques that are
aware of energy consumption. Other efforts of this
category focus on providing energy-aware protocols
for transmitting data in wireless networks (Seddik-
Ghaleb, Ghamri-Doudane & Senouci 2006, Singh
& Singh 2002) and ad-hoc networks (Gurun, Nag-
purkar & Zhao 2006). Memory consumption is an
important factor concerning a system’s energy con-
sumption. In this regard work such as (Koc, Oz-
turk, Kandemir, Narayanan & Ercanli 2006, Ozturk &
Kandemir 2005) have provided energy-aware mem-
ory management techniques. In battery-powered sys-
tems, it is not sufficient to analyze algorithms based
only on time and space complexity. Energy-aware
algorithms such as (Jain et al. 2005) supporting ran-
domness, (Potlapally, Ravi, Raghunathan & Jha 2006)
focusing on cryptographic, and (Sun, Gao, Chi &
Huang 2008) investigating into wireless sensor net-
works were published.

3 SORTING ALGORITHMS

In the first days of computing, sorting data (num-
bers, names, etc.) was in the focus of research. One
reason might be that although sorting appears to be
“easy” its efficient execution by machines is inher-
ently complex. Even today, sorting algorithms are
still being optimized or even newly invented. When
it comes to mobile systems and information retrieval,
efficient sorting is a major concern regarding perfor-
mance and energy consumption. In the following we
describe the set of sorting algorithms that were used
in the context of this study. This set was defined to
include the major algorithms that are either used in
form of library functions (e.g., Quicksort), are eas-
ily programmable (e.g., Bubblesort) or that are regu-
larly taught to IT students. In other words, our goal
was to cover those algorithms that are in widespread
use. More details on them can be found in standard
text books on algorithms and data structures such as
(Lafore 2002).

• Bubblesort belongs to the family of comparison
sorting. It works by repeatedly iterating through
the list to be sorted, comparing two items at a time
and swapping them if they are in the wrong order.
The worst-case complexity is O(n2)1 and the best
case is O(n). Its memory complexity is O(n).

• Heapsort is a comparison-based sorting algorithm
and part of the selection sort family. Although
somewhat slower in practice on most machines
than a good implementation of Quicksort, it has
the advantage of a worst-case time complexity of
O(n log n).

• Insertionsort is a naive algorithm that belongs to
the family of comparison sorting. In general in-
sertion sort has a time complexity of O(n2) but
is known to be efficient on data sets which are al-
ready substantially sorted. Its average complexity
is O(n2/4) and linear (O(n)) in the best case. Fur-
thermore insertion sort is an in-place algorithm that
requires a linear amount O(n) of memory space.

• Mergesort was invented by John von Neumann
and belongs to the family of comparison-based
sorting. Mergesort has an average and worst-case
performance of O(n log n). Unfortunately, Merge-
sort requires three times the memory of in-place al-
gorithms such as Insertionsort.

• Quicksort was developed by Sir Charles Antony
Richard Hoare (Hoare 1962). It belongs to the
family of exchange sorting. On average, Quick-
sort makes O(n log n) comparisons to sort n items,
but in its worst case it requires O(n2) comparisons.

1n represents the size of input; the number of elements
to be sorted

Typically, Quicksort is regarded as one of the most
efficient algorithms and is therefore typically used
for all sorting tasks. Quicksort’s memory usage de-
pends on factors such as choosing the right Pivot-
element, etc. On average, having a recursion depth
of O(log n), the memory complexity of Quicksort
is O(log n) as well.

• Selectionsort belongs to the family of in-place
comparison sorting. It typically searches for the
minimum value, exchanges it with the value in
the first position and repeats the first two steps for
the remaining list. On average Selectionsort has a
O(n2) complexity that makes it inefficient on large
lists. Selectionsort typically outperforms bubble
sort but is generally outperformed by Insertionsort.

• Shakersort (Brejová 2001) is a variant of Shell-
sort that compares each adjacent pair of items in a
list in turn, swapping them if necessary, and alter-
nately passes through the list from the beginning
to the end then from the end to the beginning. It
stops when a pass does no swaps. Its complexity
is O(n2) for arbitrary data, but approaches O(n) if
the list is nearly in order at the beginning.

• Shellsort is a generalization of Insertionsort,
named after its inventor, Donald Shell. It belongs to
the family of in-place sorting but is regarded to be
unstable. It performs O(n2) comparisons and ex-
changes in the worst case, but can be improved to
O(n log2 n). This is worse than the optimal com-
parison sorts, which are O(n log n). Shellsort im-
proves Insertionsort by comparing elements sepa-
rated by a gap of several positions. This lets an
element take “bigger steps” toward its expected po-
sition. Multiple passes over the data are taken with
smaller and smaller gap sizes. The last step of
Shellsort is a plain Insertionsort, but by then, the
list of data is guaranteed to be almost sorted.

4 OPTIMIZING ENERGY

To dynamically adapt/optimize the energy con-
sumption of a mobile and embedded systems, we de-
veloped an architecture (see Figure 1) that closely fol-
lows the idea of the energy management component
presented in (Bunse & Höpfner 2008). EMC aimed
at optimizing the communication effort of a system.
Here the focus is on using the “optimal” algorithm
concerning energy and processing speed.

At its core the experiment system defines a family
of sorting strategies (algorithms), encapsulates each
of these, and makes them interchangeable. This is
nicely supported by the strategy pattern defined by
(Gamma, Helm, Johnson & Vlissides 1995). The
strategy pattern supports the development of soft-

energy profile user preferences concerning

Optimizer

the energy management
(i.e., determining the delta)

cost via trend functionapplication
Host 1 1Host 1

1

Sorting
ComChannel

1

1

+Strategy()Host 2 1

Quicksort Insertionsort Mergesort
BlueTooth

Qu c so t

+Strategy()

se t o so t

+Strategy()

e geso t

+Strategy()
…

Figure 1: Algorithm-Energy Optimizer

ware systems as a loosely coupled collection of inter-
changeable parts. The pattern decouples a strategy
from its host, and encapsulates it into a separate class.
It thus, supports the separation of an object and its be-
haviour by organizing them into two different classes.
This allows switching to the strategy that is needed at
a specific time.

There are several advantages of applying the strat-
egy pattern for an adaptable software system. First,
since the system has to choose the most appropriate
strategy concerning performance and energy it is sim-
pler to keep track of them by implementing each strat-
egy by a separate class instead of embedding it in
the body of a method. Having separate classes al-
lows simply adding, removing, or changing any of
the strategies. Second, the use of the strategy pattern
also provides an alternative to sub-classing an object.
This also avoids the static behavior of sub-classing.
Changes therefore require the creation/instantiation
of a different subclass and replacing that object with
it. The strategy pattern allows switching the object’s
strategy, and it will immediately change how it be-
haves. Third, using the strategy pattern also elim-
inates the need for various conditional statements.
When different strategies are implemented within one
class, it is difficult to choose among them without re-
sorting according to the conditional statements. The
strategy pattern improves this situation since strate-
gies are encapsulated as an object that is interchange-
able at runtime.

To select the most appropriate strategy/algorithm
the optimizer has to be aware of the cost of its execu-
tion. Therefore, a cost model is needed that provides
a “rough” estimate of an algorithms energy consump-
tion based on the input size. However, it has to be
noted that the used cost model instance is only valid
for the actually used platform. Basically we followed
the empirical data gathered in the context of (Bunse

et al. 2009) concerning the energy consumption of
sorting algorithms running on AVR processors.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 t
re

n
d

Number of data items

Quicksort
recursive Quicksort

Insertionsort
Mergesort

recursive Mergesort
Heapsort

Figure 2: Trend functions - excerpt

We used the extrapolated trend functions of the dif-
ferent sorting algorithms (see Figure 2) as a basis for
the cost functions. The trend function calculates an
estimation of the required energy for 1,000 execu-
tions2 of an algorithm, based on the input size n. In
detail, the trend functions listed in Table 1 were ex-
trapolated, whereby the R2 value that represents the
goodness of fit was 1.

Algorithm trend function
Quicksort F (n) = n1.1388 · 0.1533
RQuicksort F (n) = n1.1771 · 0.1467
Insertionsort F (n) = n1.0679 · 0.09121467
Mergesort F (n) = n1.1035 · 0.1912
RMergesort F (n) = n1.1384 · 0.3221
Heapsort F (n) = n · 0.2324 + 0.0286
Shellsort F (n) = n2 · 0.0071 + n · 0.0047

+0.0939
Selectionsort F (n) = n2 · 0.013− n · 0.0236

+0.1908

Table 1: Trend functions

Since our goal was to find the optimal balance be-
tween sorting performance and energy consumption
it was not sufficient to simply use the trend functions
as cost function. Due to the linear nature of the trend
function the result would always indicate Insertion-
sort as the most energy-efficient algorithm. Keeping
these formulas and assumptions in mind the following
selection algorithm can be defined:

1. By using the size n of the set as an input the energy-
related costs for all algorithms are calculated and
stored.

2to level out measurement errors

2. The minimum result and thus the most energy-
efficient algorithm is identified.

3. Based on the algorithmic complexity, the minimum
value is compared to those values that are related to
algorithms of “lower” complexity classes.

4. If the difference in energy-consumption is below a
predefined threshold or delta the “faster” algorithm
is chosen.

The goal of an adaptive application (e.g., our exper-
imental system) is to optimize the Quality-of-Service
(QoS) perceived by the user. Unfortunately, often op-
timization approaches either enforce predetermined
(fixed) policies or offer only limited mechanisms for
controlling optimization. According to (Sousa, Balan,
Poladian, Garalan & Satyanarayanan 2008) those lim-
itations prevent adaptive systems from addressing
these important issues. User goals often entail trade-
offs among different aspects of quality (e.g., enhanc-
ing battery life or faster execution times).

The Optimizer architecture (see Figure 1) allows
users to actually determine the trade-off between per-
formance and energy consumption, simply by chang-
ing the cost function delta. As larger the delta be-
comes as higher the sorting performance and as lower
the battery-lifetime of the system. Thus, the delta de-
termines the size of data-sets to be sorted by a specific
algorithm. In the context of our experiments we ex-
perimented with different delta values and observed
that defining the delta as 1, 200 provides the “best”
optimization results.

5 EXPERIMENTAL DESIGN

Our previous experiments provided some insight
into the area of software-related energy consumption.
In these experiments we collected data concerning the
energy consumption of sorting algorithms as well as
algorithms that apply them. The results show that en-
ergy consumption is driven by factors such as memory
consumption and performance leading to the fact that
the fastest algorithm (e.g., Quicksort) is not the most
efficient algorithm concerning energy-consumption.

In this sense we developed a simple system (see
Figure 3). An embedded node wirelessly receives
data-sets, sorts them and sends the sorted set to an-
other recipient. The goal of the node is to primarily
sort data. However, since the node is battery powered
and the end-user expects short response times, sort-
ing is optimized according to response time and av-
erage energy consumption (i.e., maximize up-time).
On application scenario for such a node is a wireless
sensor network that collects position or life-data of
cattle. Notes are communicating wirelessly (e.g., Zig-
Bee or Bluetooth), whereby the controller-node (i.e.,

Galvanic Separation

Computer

Data Acquisition
Digital Oscilloscope

& Logger

Energy
Calculation

Result DB

Program
Pool

Evaluation
Board

Measurement Add‐On

Bluetooth
Communication

Host 1

Host 2

Figure 3: Experiment System Overview

the node that pre-processes the data) finally provides
the pre-processed data to a PC. In the context of our
experiments we use a simplified version for brevity of
illustration.

The system comprises a micro controller (i.e., AT-
Mega128, external SRAM, running on a STK500/501
board) and two Bluetooth interfaces (i.e., BlueSmirf
modules). The system establishes two data-
connections to different hosts via its Bluetooth mod-
ules. It reads values (variable size sets of unsorted
integers) via on data-connections, selects the most ap-
propriate sorting algorithm according to its optimiza-
tion goal, and transmits the sorted set to another host
via the second data-connection.

5.1 EXPERIMENTAL RUNS

Within this experiment we compared three different
approaches to optimization concerning their perfor-
mance (time and size) and their energy consumption.
In the first run the data was sorted by only using the
Quicksort algorithm, Thus, this run was optimized
for speed. In the second run,the data was sorted
by only using the Insertionsort algorithm. This rep-
resents an optimization for energy-efficiency (max.
battery lifetime) based on our previously reported
findings(Bunse et al. 2009). In the third run we
then made use of the algorithm optimizer/selector (see
Figure 1). The Optimizer aims at balancing speed
(performance) and energy efficiency to increase the
amount of sorted data and processing speed while at
the same time increasing battery lifetime through en-
ergy savings.

5.2 DATA COLLECTION

As described previously the experiment systems is
connected to two different hosts via Bluetooth (i.e.,
Figure 3 provides an overview). It receives sets (i.e.,
sequences of random integer values) of varying sizes
from the first host. The actual size of a transmitted set

is limited to 1,000 elements but is randomly chosen.
According to the actual experimental run, the sys-

tem either applies a specific sorting algorithm (i.e.,
Quicksort or Insertionsort) or selects the “best” sort-
ing algorithm from a set of algorithms and applies the
selected algorithm to the received set. The sorted set
is then sent to Host 2 and the next data set is received.
This cycle is executed until the battery is empty.

Send and receive (Host 1 and Host 2) are syn-
chronized by the clock. This leaves sufficient time
for sorting and retransmission. In addition the Blue-
tooth modules (externally powered) provide send/re-
ceive buffers to level out overlaps.

During the experimental runs the following data
was collected:

• The size of every set to be sorted (i.e., n). The size
was randomly chosen but limited to a maximum of
1,000 elements.

• The number of sets sorted (i.e., N). This is the
overall number of successfully executed sorting re-
quests throughout the experimental run.

• The battery level (i.e., V). V was measured at fixed
time intervals, whereby we assume that the actual
voltage level of a battery indicates its status and
charge level.

• Run and Execution Time (i.e., P). Run and ex-
ecution time was measured by hosts one and two
(i.e., time when a set was sent and when the sorted
set was received). Times were not measured at the
target platform in order to not falsify the measure-
ments.

6 EVALUATION OF RESULTS

Initial measurement within the experimental runs
shows that optimization results are as expected. When
looking at the battery level V over time (i.e., up-time
of our system) it supports the initial assumption that
the uptime of a systems is directly related towards the
energy consumption related to the executed software
system. However, a closer look at Figure 4 shows
that a non-adaptive approach either results in an ex-
cellent or a poor energy efficiency. Interestingly, the
results for the adaptive are close to those of the non-
optimized Insertionsort variant.

When recalling the results of Figure 4 the question
arises why should we adapt the system or is optimiza-
tion really necessary. It seems that by choosing a spe-
cific algorithm better results can be achieved than by
dynamic adaption. Therefore, we have to examine the
performance of the different variants concerning the
amount of sorting requests and the amount of data.

Figure 5 supports the initial assumption concern-
ing the trade-off between energy efficiency and per-

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Vo
lta

ge
 (m

V)

Time (hh:mm:ss)

Without Optimization - QS

Without Optimization - Ins

Optimized

Figure 4: Battery Lifetime

formance. High-performing variants (i.e., Quicksort)
handle more sorting requests (i.e., N) in a shorter pe-
riod of time but result in a very limited V . Energy-
efficient variants (i.e., Insertionsort) result in an opti-
mal V but handle significantly less sorting requests.
Only adaptive (i.e., optimized) systems provide a
good balance of energy-efficiency and performance.

0

500

1000

1500

2000

2500

3000

3500

0:
00

:0
0

4:
00

:0
0

8:
00

:0
0

12
:0

0:
00

16
:0

0:
00

20
:0

0:
00

24
:0

0:
00

28
:0

0:
00

32
:0

0:
00

36
:0

0:
00

40
:0

0:
00

44
:0

0:
00

48
:0

0:
00

52
:0

0:
00

56
:0

0:
00

60
:0

0:
00

64
:0

0:
00

68
:0

0:
00

72
:0

0:
00

76
:0

0:
00

80
:0

0:
00

84
:0

0:
00

88
:0

0:
00

92
:0

0:
00

96
:0

0:
00

10
0:

00
:0

0
10

4:
00

:0
0

10
8:

00
:0

0
11

2:
00

:0
0

11
6:

00
:0

0
12

0:
00

:0
0

12
4:

00
:0

0

Fulfilled Sorting Requests

No Opt. - QS

Optimized

No Opt. - Ins

Figure 5: Request Performance

This is also supported by Figure 6, which shows
the total number of elements that were sorted over
time. Measurement results expose a linear growth that
roughly represent the sums of sorting requests sizes.
The results confirm our initial assumption that an op-
timization for speed (Quicksort variant) results in a
fast growing curve that covers a short time period.
Optimization for energy (Insertionsort variant) results
in a curve that spans a broad time range but that does
not grow as fast as the Quicksort related curve. Fi-
nally, the optimized system seems to combines the
advantages of the other approaches. It covers a broad
time range and sorts a high number of elements. In
others words, the optimized system variant provides

a well-balanced behavior regarding performance and
energy consumption.

0

20000000

40000000

60000000

80000000

100000000

120000000

0:
00

:0
0

4:
00

:0
0

8:
00

:0
0

12
:0

0:
00

16
:0

0:
00

20
:0

0:
00

24
:0

0:
00

28
:0

0:
00

32
:0

0:
00

36
:0

0:
00

40
:0

0:
00

44
:0

0:
00

48
:0

0:
00

52
:0

0:
00

56
:0

0:
00

60
:0

0:
00

64
:0

0:
00

68
:0

0:
00

72
:0

0:
00

76
:0

0:
00

80
:0

0:
00

84
:0

0:
00

88
:0

0:
00

92
:0

0:
00

96
:0

0:
00

10
0:

00
:0

0

Sorted Elements - Total

No Opt. - QS

No Opt. - Ins

Optimized

Figure 6: Total Number of Sorted Elements

The findings concerning the effects of dynamically
choosing an algorithm at runtime are also supported
by the fact that this approach sorts more data in to-
tal than the other two approaches. Thus, optimization
does not provide results somewhere between those of
the non-adaptive systems but uses their synergy ef-
fects to provide even better results.

7 THREATS TO VALIDITY

The authors view this study as exploratory. Thus,
threats limit generalization of this research, but do not
prevent the results from being used in further studies.

Construct Validity is the degree to which the inde-
pendent and dependent variables accurately measure
the concepts they purport to measure. In specific, en-
ergy consumption is a difficult concept to measure. In
the context of this paper it is argued that the chosen
approach (assessing the battery voltage level V) is an
intuitively reasonable measure. Of course, there are
several other dimensions of the energy measurement
problem but this is future work.

Internal Validity is the degree to which conclu-
sions can be drawn about the causal effect of indepen-
dent variables on the dependent variable. In specific,
a history effect may result from measuring systems at
different times (varying context temperature). Addi-
tional experiments and runs have shown that the tem-
perature effect in a heated lab room can be neglected.

External Validity is the degree to which the results
of the research can be generalized to the population

under study and other research settings. In specific,
the materials (platforms, software, etc.) may not be
representative in terms of size and complexity. How-
ever, experiments in a university context do not allow
the use of realistic systems for reasons such as cost,
availability, etc. However, the authors view this study
as exploratory and view its results as indicators that
allow further research.

In order to improve the empirical study and address
some of the threats to validity identified above, the
following actions can be taken:
• Improve data collection. Data collection can be

improved in several ways. First, by measuring
not only battery voltage as an indirect energy con-
sumption indicator but also the exact energy con-
sumption, in joule, of the platform regarding each
algorithmic run. Second, by increasing the sam-
pling/measurement frequency (e.g., have sampling
rates of 1 microsecond or below). A third option
would be to automate the whole experimental pro-
cedure, thereby making time collection trivial.

• Improve the distinction of algorithmic complexi-
ties. The actual experiment used random data that
was only comparable between runs. However, we
did not made any distinction regarding best-, worst-
and average-case data. By separating and explicitly
distinguishing between these cases would allow for
fine-grained analysis.

• Improve the generalizability of results by running
the experiment on different platforms. Currently,
results are limited to the AVR processor family and
can thus, only serve as an indicator of the general
situation. Therefore the experiment needs to be
replicated on different platforms to get more and
more reliable data.

8 SUMMARY AND CONCLUSION

Given the rising importance of mobile and small
embedded devices, energy consumption becomes in-
creasingly important. Currents estimates by EU-
ROSTATS predict that in 2020 10-35 percent (de-
pending on which devices are taken into account) of
the global energy consumption is consumed by com-
puters and that this value will likely rise (Bunse &
Höpfner 2008). Therefore, means have to be found to
reduce the energy consumption of such devices.

The focus of this paper is on dynamically adapt-
ing a simple system at runtime by algorithm substi-
tution as a means for energy saving. Following the
ideas of resource substitution strategies as presented
in (Höpfner & Bunse 2007) we presented an Opti-
mizer Component that follows the ideas of the dy-
namic energy management component EMC (Bunse

& Höpfner 2008) and that can be plugged into other
component based systems.

At its core the optimizer uses the energy-related
trend functions of different sorting algorithms. In de-
tail, the optimizer uses the different trend functions
for determining the energy-related cost of a specific
algorithm with respect to the algorithm’s input-size.
It then compares the results and uses a user-defined
delta for selecting the best algorithm.

Our initial results are based on a micro-controller
system (AVR processor family) that communicate
wirelessly by BlueTooth. The main system function-
ality is to receive data of varying size, sort it and to
send it to another host. The data collected for different
system variants was then used to examine if energy-
consumption and sorting performance can be signif-
icantly improved. The collected data reveals that by
optimization the amount of sorted data, battery life-
time. Moreover, the overall performance can be sig-
nificantly increased. The experiments show the im-
pact of software onto a systems energy consumption
and a way to easily optimize a system in this regard.

To systematically evaluate the observed effects and
to rule out the aforementioned threats to validity we
currently prepare a case study for mobile information
systems running on a PDA or Smartphone.

REFERENCES

Brejová, B. (2001), ‘Analyzing variants of Shellsort’,
Information Processing Letters 79(5), 223–227.

Bunse, C. & Höpfner, H. (2008), Resource sub-
stitution with components — Optimizing En-
ergy Consumption, in J. Cordeiro, B. Shishkov,
A. K. Ranchordas & M. Helfert, eds, ‘Pro-
ceedings of the 3rd International Conference on
Software and Data Technologie’, Vol. SE/GSD-
CA/MUSE, INSTICC, INSTICC press, Setúbal,
Portugal, pp. 28–35.

Bunse, C., Höpfner, H., Mansour, E. & Roychoud-
hury, S. (2009), Exploring the Energy Consump-
tion of Data Sorting Algorithms in Embedded
and Mobile Environments, in ‘Proceedings of
the MDM Workshop ROSOC-M 2009’. ac-
cepted for publication, forthcoming.

Chen, J.-J. & Thiele, L. (2008), Expected system
energy consumption minimization in leakage-
aware DVS systems, in ‘ISLPED ’08: Proceed-
ing of the thirteenth international symposium on
Low power electronics and design’, ACM, New
York, NY, USA, pp. 315–320.

Feeney, L. M. (2001), ‘An Energy Consumption
Model for Performance Analysis of Routing

Protocols for Mobile Ad Hoc Networks’, Mo-
bile Networks and Applications 6(3), 239–249.

Gamma, E., Helm, R., Johnson, R. & Vlis-
sides, J. (1995), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley Professional.

Gurun, S., Nagpurkar, P. & Zhao, B. Y. (2006), En-
ergy consumption and conservation in mobile
peer-to-peer systems, in ‘MobiShare ’06: Pro-
ceedings of the 1st international workshop on
Decentralized resource sharing in mobile com-
puting and networking’, ACM, New York, NY,
USA, pp. 18–23.

Hoare, C. A. R. (1962), ‘Quicksort’, Computer Jour-
nal 5(1), 10–15.

Höpfner, H. & Bunse, C. (2007), Resource Substitu-
tion for the Realization of Mobile Information
Systems, in J. Filipe, M. Helfert & B. Shishkov,
eds, ‘Proceedings of the 2nd International Con-
ference on Software and Data Technologie’,
Vol. Software Engineering, INSTICC, INSTICC
press, Setúbal, Portugal, pp. 283–289.

Jain, R., Molnar, D. & Ramzan, Z. (2005), To-
wards understanding algorithmic factors affect-
ing energy consumption: switching complexity,
randomness, and preliminary experiments, in
‘Workshop on Discrete Algothrithms and Meth-
ods for MOBILE Computing and Communica-
tions — Proceedings of the 2005 joint workshop
on Foundations of mobile computing’, ACM,
New York, NY, USA, pp. 70–79.

Koc, H., Ozturk, O., Kandemir, M., Narayanan, S.
H. K. & Ercanli, E. (2006), Minimizing energy
consumption of banked memories using data
recomputation, in ‘ISLPED ’06: Proceedings
of the 2006 international symposium on Low
power electronics and design’, ACM, New York,
NY, USA, pp. 358–362.

Lafore, R. (2002), Data Structures and Algorithms in
Java, 2nd edn, SAMS Publishing, Indianapolis,
Indiana, USA.

Liveris, N., Zhou, H. & Banerjee, P. (2008), A
dynamic-programming algorithm for reducing
the energy consumption of pipelined system-
level streaming applications, in ‘ASP-DAC ’08:
Proceedings of the 2008 conference on Asia and
South Pacific design automation’, IEEE Com-
puter Society Press, Los Alamitos, CA, USA,
pp. 42–48.

Ozturk, O. & Kandemir, M. (2005), Nonuniform
Banking for Reducing Memory Energy Con-
sumption, in ‘DATE ’05: Proceedings of the
conference on Design, Automation and Test in

Europe’, IEEE Computer Society, Washington,
DC, USA, pp. 814–819.

Potlapally, N. R., Ravi, S., Raghunathan, A. & Jha,
N. K. (2006), ‘A Study of the Energy Con-
sumption Characteristics of Cryptographic Al-
gorithms and Security Protocols’, IEEE Trans-
actions on Mobile Computing 5(2), 128–143.

Seddik-Ghaleb, A., Ghamri-Doudane, Y. & Senouci,
S.-M. (2006), A performance study of TCP vari-
ants in terms of energy consumption and average
goodput within a static ad hoc environment, in
‘IWCMC ’06: Proceedings of the 2006 interna-
tional conference on Wireless communications
and mobile computing’, ACM, New York, NY,
USA, pp. 503–508.

Senouci, S.-M. & Naimi, M. (2005), New routing
for balanced energy consumption in mobile ad
hoc networks, in ‘PE-WASUN ’05: Proceed-
ings of the 2nd ACM international workshop on
Performance evaluation of wireless ad hoc, sen-
sor, and ubiquitous networks’, ACM, New York,
NY, USA, pp. 238–241.

Singh, H. & Singh, S. (2002), ‘Energy consumption
of tcp reno, newreno, and sack in multi-hop
wireless networks’, ACM SIGMETRICS Perfor-
mance Evaluation Review 30(1), 206–216.

Sousa, J. P., Balan, R. K., Poladian, V., Garalan, D.
& Satyanarayanan, M. (2008), User guidance
of resource-adaptive systems, in ‘Proceedings
of the 3rd International Conference on Software
and Data Technologie’, Vol. Software Engineer-
ing, INSTICC, INSTICC press, Setúbal, Portu-
gal, pp. 36–45.

Sun, B., Gao, S.-X., Chi, R. & Huang, F. (2008),
Algorithms for balancing energy consumption
in wireless sensor networks, in ‘FOWANC ’08:
Proceeding of the 1st ACM international work-
shop on Foundations of wireless ad hoc and
sensor networking and computing’, ACM, New
York, NY, USA, pp. 53–60.

Tuan, T., Kao, S., Rahman, A., Das, S. & Trim-
berger, S. (2006), A 90nm low-power FPGA
for battery-powered applications, in ‘FPGA ’06:
Proceedings of the 2006 ACM/SIGDA 14th in-
ternational symposium on Field programmable
gate arrays’, ACM, New York, NY, USA, pp. 3–
11.

Wang, L., French, M., Davoodi, A. & Agar-
wal, D. (2006), ‘FPGA dynamic power min-
imization through placement and routing con-
straints’, EURASIP Journal on Embedded Sys-
tems 2006(1).

