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ABSTRACT
There has been a proliferation of datasets available as in-
terlinked RDF data accessible through SPARQL endpoints.
This has led to the emergence of various applications in life
science, distributed social networks, and Internet of Things
that need to integrate data from multiple endpoints.

We will demonstrate Lusail; a system that supports the
need of emerging applications to access tens to hundreds of
geo-distributed datasets. Lusail is a geo-distributed graph
engine for querying linked RDF data. Lusail delivers out-
standing performance using (i) a novel locality-aware query
decomposition technique that minimizes the intermediate
data to be accessed by the subqueries, and (ii) selectivity-
awareness and parallel query execution to reduce network
latency and to increase parallelism. During the demo, the
audience will be able to query actually deployed RDF end-
points as well as large synthetic and real benchmarks that we
have deployed in the public cloud. The demo will also show
that Lusail outperforms state-of-the-art systems by orders
of magnitude in terms of scalability and response time.

1. INTRODUCTION
Linked Data has led to new ways to publish, interlink and

re-use information from remote Web data sources. There
are now many publicly accessible interlinked datasets in dif-
ferent domains, such as media, government, and life sci-
ences [7]. Each dataset is stored as RDF triples and is acces-
sible via a SPARQL endpoint, which is a service published
at a URI receiving SPARQL queries via HTTP requests.
According to stats.lod2.eu, linked RDF data consist of more
than 85 billions triples over more than 3400 datasets.

The availability of such a large amount of data has led
to the emergence of several applications that need to query
linked RDF data at scale, i.e., accessing tens to hundreds
of geo-distributed linked RDF datasets. For example, in
life sciences, Bio2RDF1 has about 11 billions triples across

1http://bio2rdf.org/
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Figure 1: Sensitivity of FedX to the number of end-
points while fully caching the results of source se-
lection (best setting for FedX). The response time
is proportional to the number of remote requests.

35 datasets, and the Internet of Things will connect billions
of decentralized datasets [1] that will need to be accessed.

In our own work building a distributed social network [4]
and collaborating with Bio2RDF, we found that the state-
of-the-art systems, such as FedX [8], SPLENDID [2], and
HiBISCuS [6], cannot meet the needs of these applications
since they have a scalability limitation in terms of the num-
ber of datasets (endpoints) they can access. This limita-
tion becomes more serious when these endpoints are geo-
distributed, i.e., are not in the same cluster. A recent sur-
vey [5] shows that FedX [8] outperforms all existing sys-
tems. However, FedX was not able to process all queries of
LargeRDFBench2, a benchmark which has 13 different real
datasets with up to 1 billion triples.

The main limitation of the state-of-the-art systems comes
mainly from the way they decompose the query into sub-
queries that are then sent as HTTP remote requests to rel-
evant endpoints. In addition, these systems utilize bound
joins which limit the amount of parallelism a system can
achieve. In fact, we conducted an experiment that checks
the relationship between the size of intermediate results,
the number of remote requests, and query response time
using FedX [8] with two queries: a Drug query and query
Q2 from LUBM 3. The Drug query finds medicines that
target asthma and optionally gets information about these
medicines. It uses up to 4 datasets, corresponding to 4 end-
points. Query Q2 finds graduate students who are registered
in courses delivered by their advisor. Each endpoint in the
LUBM benchmark corresponds to a university, and adding
more endpoints corresponds to adding more universities. By
varying the number of endpoints and measuring the response
time and the number of remote requests (see Figure 1), we

2https://github.com/AKSW/LargeRDFBench
3http://swat.cse.lehigh.edu/projects/lubm/
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see a clear correlation between the query response time and
the number of HTTP requests generated for remote queries,
which limits scalability. Processing one triple pattern at a
time while binding query variables to values from interme-
diate results causes a huge number of remote requests.

In this demo, we highlight the architectural design choices
of Lusail as a geo-distributed graph engine for querying
linked RDF data. Section 3 outlines the main novel ideas
for our locality-aware query decomposition and selectivity-
awareness and parallel execution. In Section 4, we show
how Lusail will be demonstrated using real data and syn-
thetic benchmarks, with datasets of total sizes of billions
of triples. For real datasets, we will show Lusail’s perfor-
mance in answering real queries on the 35 Bio2RDF end-
points. We will also deploy the 13 datasets of LargeRDF-
Bench over 7 different regions in the USA and Europe of
the Microsoft Azure cloud. For the synthetic benchmark,
we will show query performance against 256 endpoints of
the LUBM benchmark. The audience will be able to query
these datasets. We will also give a glimpse on how Lusail
outperforms state-of-the-art systems by up to three orders
of magnitude and scales-up to 256 endpoints, whereas other
systems cannot scale beyond 4 endpoints.

2. FEDERATED SPARQL QUERIES - THE
STATE-OF-THE-ART

A federated SPARQL query cannot be answered by a sin-
gle endpoint as it requires joining partial results from multi-
ple endpoints. For example, the query in Figure 2 finds US
presidents, their parties, and associated news articles.

A federated SPARQL query does not necessarily specify
the endpoints against which it is processed. Therefore, the
first step in federated SPARQL query processing is source
selection; selecting the endpoints to be queried. There are
two approaches for source selection: either use a list of end-
points [8], such as the list maintained by W3C4, or discover
relevant endpoints on the fly by looking up URIs and live
exploration [3]. For a list of endpoints and for each triple
pattern, the federated query processor asks each endpoint
whether it can answer the given triple pattern. For exam-
ple, the triple patterns in lines 2 and 4 (Figure 2) can be
answered by the DBpedia endpoint while the one in line 5
(Figure 2) can be answered by the NYTimes endpoint. Any
endpoint, which can answer at least one of the query triple
patterns, is considered relevant and must also be queried.

Several systems, such as SPLENDID [2], HiBISCuS [6],
and FedX [8] adopt a näıve query processing approach by
iterating over all triple patterns in the query to: (i) evalu-
ate the triple pattern against the corresponding endpoints,
(ii) fetch intermediate data, and (iii) utilize bound join with
the fetched intermediate data to solve the next triple pat-
terns. Figure 3 demonstrates this approach for the query
in Figure 2. The first iteration starts with the first triple
pattern on line 2, and gets the names of US presidents as
intermediate solutions. Then, each of these solutions binds
the query variable ?president to one of these names. After
that, remote requests are sent to get solutions for the vari-
able ?x. The federated query processor then outputs the
required query answers. These systems attempt to optimize
the näıve approach in different ways. One obvious opti-
mization is based on analyzing the endpoints’ schemas. If

4http://www.w3.org/wiki/SparqlEndpoints

1 SELECT ?president ?party ?page WHERE {
2 ?president a dbpedia-yago:PresidentsOfUSA .
3 ?x <http://www.w3.org/2002/07/owl\#sameAs> ?president .
4 ?president <http://dbpedia.org/ontology/party> ?party.
5 ?x <http://data.nytimes.com/elements/topicPage> ?page. }

Figure 2: A federated SPARQL query to find US
presidents and associated news articles.
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Request 3 ?x  <…#sameAs> “George W. Bush”.  
Request k ….. 

K requests from iter2 

Figure 3: Traditional federated query processing.

a set of triple patterns has a solution exclusively at a single
endpoint, these patterns are sent together to that endpoint
as one request. We call this schema-based decomposition.
Another optimization uses block nested loops joins to send
multiple triple patterns to an endpoint as one request (e.g.,
the k patterns sent to NYTimes in Figure 3 can be sent as
one request). Other optimizations include gathering offline
statistics about ontologies or cardinalities of triples at differ-
ent endpoints to reduce the online cost of query processing.

The effectiveness of schema-based decomposition is lim-
ited by the fact that endpoints belonging to the same domain
(e.g., universities, government, or hospitals) utilize similar
ontologies. Hence in many cases, a triple pattern can be
answered by multiple endpoints. This is also the case for
common predicates such as owl:sameAs and rdfs:seeAlso,
which appear in most endpoints [7]. If a triple pattern can
be answered by multiple endpoints, it cannot be part of an
exclusive group and needs to be sent to the endpoints as
an individual triple. This leads to many queries being pro-
cessed one triple pattern at a time. These triple patterns re-
trieve a large amount of data, which is then bound to other
variables and sent to other endpoints to compute the query
results. Therefore, current federated RDF systems retrieve
unnecessary data from the endpoints and make numerous
round trips to the endpoints, which leads to poor scalability
and poor query response time. In addition, the nature of
the bound join operation and the binding process limit the
available parallelism since only one join step is processed at
a time, and the federated query processor has to wait for
the results of this join step before issuing the next join.

3. SYSTEM ARCHITECTURE
Lusail’s architecture is shown in Figure 4. Lusail opti-

mizes federated SPARQL query processing via two strate-
gies: (i) at compile time, Lusail employs a novel locality-
aware decomposition technique. Lusail’s decomposition is
based not on the schema but rather on the actual locations
of data instances satisfying the query triple patterns. This
decomposition increases parallelism in the query execution
and minimizes the retrieval of unnecessary data from the
endpoints. (ii) At run time, Lusail employs a selectivity-
aware and parallel query execution technique that orders
subqueries based on their selectivity. It delays subqueries
expected to return large results, and chooses the join order
of the subqueries that achieve a high degree of parallelism.

1604
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Figure 4: The Lusail architecture.

3.1 Locality-Aware Decomposition
To avoid the processing of one triple pattern at a time,

we utilize the knowledge of the locations of the actual
RDF triple instances matching a query variable. Consider
an example from the LUBM benchmark, where each end-
point represents a university. Knowing the actual loca-
tion of these instances leads to two different cases of pro-
cessing triple patterns: (i) local instances, e.g., the in-
stances matching the variable ?Stud in 〈?Stud, ub:advisor,
?Prof〉 and 〈?Stud, ub:takesCourse, ?Course〉 are located
in the same endpoint; i.e., all advised students are taking
courses. (ii) remote instances, e.g., one of the instances
matching the variable ?Univ in a university endpoint, whose
triples are 〈?Prof, ub:PhDDegreeFrom, ?Univ〉 and 〈?Univ,
ub:address, ?Adrs〉, is located in different endpoints, i.e.,
there is a professor working in a given university that is dif-
ferent from the university he graduated from. In the former
case, the triple patterns can be processed as one unit by the
same endpoint while in the latter, they have to be sent sep-
arately and then joined by the federated query processor.
In contrast to using exclusive groups [8] to find groupings of
triple patterns based on schema information, we are propos-
ing to find groupings based on instance information.

Existing federated SPARQL systems, such as SPLEN-
DID [2], HiBISCuS [6], and FedX [8], cannot determine the
location of triples in a general and accurate way. Hence,
they retrieve unnecessary data from the data sources, lead-
ing to poor scalability and response time. In contrast to
other systems, Lusail takes the additional step of checking,
for each pair of triple patterns with a common (or join) vari-
able, whether the pair can be evaluated as one unit by the
relevant endpoints. The result of this check determines a
group of triple patterns, i.e., a subquery, that can be sent
together to an endpoint.

3.2 Selectivity-Aware and Parallel Execution
Our set of independent subqueries can be submitted con-

currently for execution at each of the relevant endpoints.
The results of these subqueries will then need to be joined
by Lusail. Unlike other systems, each subquery is treated
as an independent task, thus allowing Lusail to utilize more
threads as needed. This decision is made by the Elastic Re-
quest Handler. The simplest approach is to simultaneously
submit the subqueries to the relevant endpoints and wait
for their results to start the joining phase. Some subqueries
may affect the query evaluation time by overwhelming the
network, the endpoints, and Lusail, with irrelevant data.
Examples include: (i) generic subqueries that are relevant
to the majority of the endpoints, e.g., common predicates
such as owl:sameAs, rdf:type, rdfs:label and rdfs:seeAlso. (ii)

Figure 5: Demonstration interface.

Table 1: Datasets used in the demo.
Benchmark Endpoint Triples(M) Type
LUBM 256 Universities 35 Synthetic
LargeRDFBench 13 Datasets 1,004 Real
Bio2RDF 35 Datasets 11,895 Real

Simple subqueries that have one triple pattern with two or
three variables, e.g., 〈?s, ?p, ?o〉 or 〈?s, owl:sameAs, ?o〉,
and (iii) optional subqueries.

Our cost model delays subqueries expected to return large
results. Lusail assigns a thread per endpoint to collect the
result of the subquery. The result is seen as a relation, whose
data is partitioned among different threads. Lusail decides
the join order based on the number of partitions and the
actual size of the result per subquery. Thus, we can achieve
a high degree of parallelism while minimizing the commu-
nication cost at two levels: (i) globally, by getting results
from different endpoints simultaneously, and (ii) internally,
by utilizing different threads in joining results.

4. DEMONSTRATION OVERVIEW
The objective of our demonstration is to show the ease

of finding and integrating data from different data sources
in a large set of data sources. In real applications, such as
Bio2RDF or data.gov, data scientists have to first identify
relevant data sources to the task under investigation. Then,
they either manually query the endpoints one-by-one and
compose the results, or instead use the SERVICE keyword
to name an endpoint from which a specific triple pattern
has to be answered5. For example, one may be interested
in evaluating the disparity between the amount of research
and the burden of a specific disease, e.g., tuberculosis. To
do so, the data scientist has to know that the relevant data
sets are PubMed, GHO and LinkedCT. Similarly, getting
the phenotypes of knock-out mouse models for the targets
of a selected drug requires joining data from four Bio2RDF
datasets; namely DrugBank, HGNC, MGI and BioPortal.
These relevant datasets are out of a list of tens or even thou-
sands of datasets, such as in data.gov.

Instead of explicitly specifying the relevant endpoints,
users submit queries to Lusail against a large set of po-
tential endpoints and get the final results in a reasonable
time, as shown Figure 5. We will demonstrate how our sys-
tem can work with any set of SPARQL endpoints without
any preprocessing. Participants can add/delete to the list of

5https://github.com/bio2rdf/bio2rdf-scripts/wiki/
Query-repository
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(a) LargeRDFBench: Complex Queries
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(b) LargeRDFBench: Large Queries
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(c) LUBM Queries: Two Endpoints

Figure 6: Geo-distributed federation: endpoints are deployed in 7 different regions of the Azure cloud.
Communication cost affects all systems, but Lusail can execute all queries and outperforms other systems.

endpoints/datasets as needed. Note that for other systems,
such as SPLENDID [2], and HiBISCuS [6], the data must
be preprocessed and indexed offline. Participants can write
federated SPARQL queries, or choose one of the predefined
queries. The predefined queries can be selected either from a
real query log (Bio2RDF), or from benchmark queries (Larg-
eRDFBench and LUBM). The benchmarks provide a mix-
ture of queries with varying structural characteristics and
selectivity classes. Participants will be able to see our query
analysis, decomposition and subquery order. Moreover, our
demo provides a visualization of the amount of communica-
tion incurred during query evaluation between the relevant
endpoints and Lusail.

4.1 Demonstration Setup
We will showcase Lusail with real and synthetic datasets

(see Table 1). LargeRDFBench is a recent federated bench-
mark of 13 interlinked real datasets pertaining to different
domains including DBpedia (wikipedia infoboxes), Linked-
MDB (movie database), GeoNames (geographical data),
Drugbank and Cancer Genome Atlas. Bio2RDF is a ma-
jor provider of linked data in life sciences. It contains 11
billion triples connecting 35 different biological datasets,
including UniProt (protein database), KEGG (Genes and
Genomes), PubMed (medical publications), and the Gene
Ontology. Using LUBM, we generate data for 256 universi-
ties, each with around 138K triples. The data includes links
between the different universities through students and pro-
fessors. We use Virtuoso 7.1 as the SPARQL engine at the
endpoints.

The audience will experience Lusail through two different
settings: Queries to Bio2RDF will be answered by directly
accessing the actual endpoints while LargeRDFBench and
LUBM will be deployed on our own infrastructure. More
specifically, we simulate a real setting where Lusail and end-
points are deployed on the Azure cloud in 7 different regions
in the USA and Europe. We will use 18 instances of 16 cores
and 28 GB memory. These instances will host the 13 Larg-
eRDFBench and the 256 LUBM endpoints. Lusail and its
competitors are deployed on a D5 V2 instance (16 cores, 56
GB memory) in Central USA, while none of the 18 instances
is located in Central USA.

4.2 Experimental Evaluation
We now show some results of our experiments to evalu-

ate Lusail by simulating a real scenario on the cloud as well
as using real endpoints, as described earlier. Figures 6(a)
and 6(b) show the query response times of both complex
and large queries on LargeRDFBench. For complex queries,

FedX timed out on two queries and gave runtime errors in
two others. HiBISCuS timed out on three queries but did
reasonably well in the rest. SPLENDID was able to eval-
uate only five out of the ten complex queries. Lusail out-
performed all other systems in almost all complex queries,
in some cases by up to two orders of magnitude (C1 and
C9 ). Large queries show the same behavior. Lusail is the
only system that returns results (no time out or runtime
errors). Figure 6(c) shows results on two endpoints of the
LUBM dataset. All queries finished in around 1 second. In
contrast, both FedX and HiBISCuS require more than 1,000
seconds; an order of magnitude compared to their perfor-
mance on the local cluster. This shows their sensitivity to
the communication overhead since they tend to communi-
cate large volumes of data. With four endpoints, FedX and
HiBISCuS were able to evaluate only Q3 and ran out of
memory or timed out in the rest. Lusail managed to process
the 4 LUBM queries in less than 8 seconds on 256 endpoints.
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