
A Demo of the Data Civilizer System

Raul Castro Fernandez8 Dong Deng8 Essam Mansour7 Abdulhakim A. Qahtan7

Wenbo Tao8 Ziawasch Abedjan; Ahmed Elmagarmid7 Ihab F. Ilyas`

Samuel Madden8 Mourad Ouzzani7 Michael Stonebraker8 Nan Tang7

8MIT CSAIL 7Qatar Computing Research Institute, HBKU ;TU Berlin `University of Waterloo
{dongdeng, raulcf, wenbo, madden, stonebraker}@csail.mit.edu

{emansour, aqahtan, aelmagarmid, mouzzani, ntang}@hbku.edu.qa
abedjan@tu-berlin.de ilyas@uwaterloo.ca

ABSTRACT
Finding relevant data for a specific task from the numer-
ous data sources available in any organization is a daunting
task. This is not only because of the number of possible
data sources where the data of interest resides, but also due
to the data being scattered all over the enterprise and being
typically dirty and inconsistent. In practice, data scientists
are routinely reporting that the majority (more than 80%)
of their effort is spent finding, cleaning, integrating, and ac-
cessing data of interest to a task at hand. We propose to
demonstrate Data Civilizer to ease the pain faced in ana-
lyzing data “in the wild”. Data Civilizer is an end-to-end
big data management system with components for data dis-
covery, data integration and stitching, data cleaning, and
querying data from a large variety of storage engines, run-
ning in large enterprises.

1. INTRODUCTION
Enterprises are increasingly turning to data scientists to

obtain business value from the vast amount of data within
and outside the enterprise. A major impediment for these
scientists to do their job is the oft-cited statistics that they
spend at least 80% of their time finding, preparing, inte-
grating, and cleaning data sets. The remaining 20% is spent
doing the desired analytic tasks. Even worse, 80% may be
a lower bound, since one data officer from a large pharma-
ceutical company estimates this number to be 98%.

We are building Data Civilizer to lower this number by
providing an end-to-end system for:

(1) Discovering datasets relevant to the task at hand.

(2) Obtaining access to these datasets.

(3) Integrating datasets and deduplicating the result.

(4) Stitching together datasets through the best join paths.

(5) Cleaning datasets under a limited budget.

(6) Querying datasets that live across different systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058740

It comes as no surprise that each of these tasks has received
considerable attention in isolation. For example, work in
data integration and schema mapping has focused on match-
ing the data and meta data of different data sources [2], while
data cleaning solutions have focused primarily on cleaning
specific data sources with respect to a certain type of er-
rors [5]. Recent polystore proposals [1, 4] have addressed
the last challenge of querying data across different systems.
While these point solutions would partially help with the
data preparation task faced by a data scientist, an end-to-
end system that tackles these problems can benefit from
synergies and optimization across modules.

Our work is motivated by several use cases that cover
most of the data landscape in real organizations. Merck is a
“Big Pharma” that has in excess of 4000 databases, a data
lake, uncountable numbers of files and they have interest in
a large variety of data off the public web. They report that
their data scientists currently spend 98% of their time in the
data preparation activities noted above, and have started us-
ing our software to reduce this percentage. The MIT Data
Warehouse (MIT DWH) has in excess of 2400 tables with
typical university information (e.g., students, courses, de-
partments, and buildings). Administrators routinely want
specific records from this warehouse. For example, an ad-
ministrator might want to get the information of all the
students in schools of engineering.

We have recently laid out our vision of Data Civilizer
in [3]. We now propose to demonstrate a prototype of Data
Civilizer. We outline the architectural choices we have
made while designing the system in Section 2. We will then
demonstrate an end-to-end use case in Section 3.

2. THE ARCHITECTURE
The Data Civilizer system consists of several intercon-

nected components. Figure 1 gives an overview of how data
scientists use Data Civilizer. Starting with a hypothe-
sis, the analyst goes through several steps. These include
finding relevant data, stitching them together and spending
some time in data cleaning. The goal is to obtain the data
required to validate the hypothesis. Data Civilizer has
the following modules:

Data Profiler and Graph Miner. This offline module
creates the metadata required by the subsequent online mod-
ules. It mainly summarizes data contents into an index and
relationships among data elements into a linkage graph.

Data Discovery. This module allows users to capture their

1639

Figure 1: System Overview

intuition about the desired datasets into a Source Retrieval
Query Language (SRQL). SRQL queries are based on a dis-
covery algebra for expressing different discovery needs.

Join Path Selection. Given multiple datasets obtained
from the previous module, users are usually interested in
finding ways to stitch them together and ask meaningful
queries. For that purpose, they use an SRQL query to find
join paths between tables of interest. When multiple join
paths are available — a common situation in large datasets
— which join path should we choose? We propose a join
path selection algorithm that permits users to choose the
most appropriate join path. The algorithm uses the source
error estimator to determine the cleanliness of the datasets.

On-Demand Cleaning. Cleaning all source tables is in-
feasible with large volumes of data. Data Civilizer incor-
porates a cleaning module that, given a budget, suggests the
best cells to clean for the desired view. This module uses
the source error estimator in selecting the cells to clean.

Data Querying. Once analysts obtain the necessary
datasets, they want to query it. Since this may involve
querying several datasets living in different systems, such as
tables in PostgreSQL and files in HDFS, we use a Polystore
(RHEEM [1] or BigDAWG [4]) to perform such operation.

2.1 Data Discovery
The discovery component faces two main challenges. One

of scale — due to the large amount of data — and one
of variety of discovery needs that different users have.
To tame the scale of the problem and retrieve enough in-
formation to allow different discovery needs, the discovery
component builds a linkage graph that summarizes informa-
tion related to attributes and tables, capturing relationships
between them. Conceptually, the discovery component has
the following three parts (Figure 1):

(I) Data Profiler
This component summarizes each column of each table into
a profile which consists of one or more signatures; each sig-
nature summarizes the original content of the column into
a domain-dependent, compact representation of the original

data. By default, signatures for numerical values consist of a
statistical distribution, such as a histogram or KDE, as well
as summary statistics. For textual values, the signatures
consist of a vector of TF-IDF vectors as well as minhash
signatures. Our profiles also contain information about data
cardinality, data type, and numerical ranges if applicable. In
addition to the profiles, we maintain a global keyword index
to facilitate keyword queries. The index maps keywords to
columns containing the word in their names, content or ta-
ble name — in which case all columns are retrieved. To run
at scale, we must read data only once and rely on Opnq algo-
rithms. For this, we use a distributed profiler consisting of
a pipeline of stages, each implementing an Opnq algorithm
to approximately compute the statistics, cardinality as well
as to determine data types and other metadata.

(II) Graph Miner
The linkage graph is modeled as a hypergraph. Nodes are
attributes in the underlying data and hyperedges link nodes
that are part of the same hierarchical organization. For ex-
ample, hyperedges can indicate relations, or functional de-
pendencies. Such model can express relationships involving
either individual nodes or groups of nodes — those con-
nected by a hyperedge. Currently, the graph miner finds re-
lationships of the following type: column similarity, schema
similarity, inclusion dependency, and PK-FK relationship.
Metadata information computed by the profiler is kept sep-
arately in an index database for efficient retrieval. The edge
labels in the graph include metadata about the relationship
they represent, e.g., type and score, if any. Computing dif-
ferent relationships requires different time complexities. We
categorize them into light relationships, which can be com-
puted in sub-quadratic time, and heavy relationships, which
need at least quadratic time. The light relationships contain
column and schema similarities, as well as candidate PK-FK
relationships. The heavy relationships contain a different
flavor of primary key-foreign key (PK-FK) relationships, in-
clusion dependencies, and structure similarities.

(III) SRQL Algebra
Users issue discovery queries using our new SRQL alge-
bra. SRQL defines several operators such that each operator
takes as input columns, tables or keywords and produces a
set of datasets. We define five classes of primitives: (i) Edge
primitives return the nodes connected with an input column
or table. For example, there is an edge primitive to retrieve
columns with similar attribute name, or those with similar
content. (ii) Hyperedge primitives retrieve the tables that
contain a given attribute, or the attributes contained in a
given table. There exist hyperedges attributes for each type
of hyperedges, e.g., for tables, and functional dependencies.
(iii) Path primitives allow to explore the graph through path
queries to answer queries such as: are A and B connected
through a sequence of PK-FK joins? (iv) Set primitives are
the main building blocks to combine the other primitives
into SRQL queries. The “and”, “or” and set difference prim-
itives operate on sets of columns and tables. (v) Lookup
primitives receive keywords and retrieve attributes and ta-
bles from the graph that contains the keyword in either their
values, column names, or table names.

2.2 Data Stitching and Join Path Selection
We assume that a user has run discovery to find the rele-

1640

vant datasets. If the user is interested in a composite table
containing a particular set of columns that are not avail-
able in any single data source, she needs a way to stitch
the relevant datasets together. For this purpose, we can use
the PK-FK relationships described in the previous section
to find a set of possible join paths to materialize the table of
interest to the user. However, we still need to choose which
of several possible join paths is the best to compute the ta-
ble of interest. Since each join path leads to a different view
with different semantics, quality and size, we first cluster
the join paths based on their semantics and then choose the
best join path with respect to both cleanliness (view qual-
ity) and cardinality (view size). The user will then choose
the one with the right semantics.

Join Path Clustering
Each join path is composed of a chain of tables. We use
the “subject” column of each table to identify its semantics.
We assume that the “subject” column in a table is the one
that contains almost all unique values. Then we compare
the tables in the chains of two join paths. If each pair of
tables has a similar “subject” column, i.e., their domains
have a large overlap, we put them into the same cluster as
they probably have the same semantics.

Join Path Cleanliness Estimation
To estimate the join path cleanliness, we first need to esti-
mate the cleanliness of each source table. To this end, we
run multiple semi-automatic error detection tools to detect
errors. Since not all the detected errors are true positives,
we use the precision of the tools, i.e., the ratio of correctly
identified errors, to estimate their cleanliness.

More specifically, suppose a set C of cells from the source
tables have been already labeled by a user, either from pre-
vious cleaning actions or on-demand for the current query.
We need to estimate the cleanliness of the cells detected as
errors by one or more tools. We use the sample labeling to
for this purpose. More specifically, we estimate the precision
p for the errors detected simultaneously by a set of n tools,
T1, T2, ¨ ¨ ¨ , Tn, by counting the ratio of true error cells in
C XET1 XET2 X ¨ ¨ ¨ XETn . For any cell c detected simulta-
neously as an error by n tools, we estimate its cleanliness as
1´p, which gives us a score between 0 and 1. Note that if a
cell is not detected to be an error by any tool, we estimate
its cleanliness as 1. Then, given a join path, we propagate
the estimated cleanliness of all the source tables in the join
path to the values in the view and aggregate them as the
estimated cleanliness. The basic idea behind the cleanliness
propagation is that any cell that participates in any predi-
cate will transmit its cleanliness to the other cells within the
same row. This is because the cleanliness of these cells will
affect the results of the predicate and will further affect the
cleanliness of the other cells within the same row.

2.3 On-Demand Data Cleaning
Cleaning all datasets that Data Civilizer has access to is

clearly infeasible. In Data Civilizer, we take an approach
where cleaning happens on-demand based on the query at
hand. More specifically, the actual cleaning of a query result
requires feedback from the user on how to change the value
of a cell that we estimated to be erroneous. Since users are
usually expensive, we limit their involvement to a set budget
of cells to be cleaned. Given a user budget, we first need to

find out which cells to clean. If we clean all of the source
tables, we may waste budget on irrelevant cells as not all of
them will affect the view. If we clean the view, the cleaned
data can only be used for the current task and cannot benefit
future queries. Thus, Data Civilizer only cleans the source
cells that will affect the view; these can be gathered from
the cleanliness propagation process. As we cannot clean all
of these cells, the next question is which cells to clean first.
Our approach chooses the cells that are expected to have the
biggest impact over the view. The impact is measured by an
objective function that combines both the size and quality of
the view. To compute the impact of each individual cell, we
reverse the cleanliness propagation process and accumulate
the expected cleanliness improvement of the value in the
view for all the source cells.

3. DEMONSTRATION OVERVIEW
During the demonstration, the audience will experience

several data scenarios. We describe bellow one using the
MIT DWH. A data analyst of the MIT DWH receives a
request from a customer in the human resources (HR) de-
partment. The analyst wants to know which employees at
MIT work for degree granting departments — some insti-
tutes employ staff but do not grant degrees. The job of the
analyst is to scrape through the different sources of infor-
mation available at MIT and find the relevant sources to
the question at hand. They then put together a view that
contains the necessary information, and fix possible data
quality issues, before making the view available to the cus-
tomer from HR. This process is time-consuming, brittle to
changes in the underlying schemas, error-prone and has to
be repeated for each single request. The Data Civilizer
demo utilizes RHEEM [1] as a cross-platform execution en-
gine in order to manage the information that spans multiple
data models and data storages.

3.1 Finding Relevant Data
The discovery component of Data Civilizer allows

searching for tables through their names, attributes, or con-
tent, as well as through their relationships with other at-
tributes and tables, as shown in Figure 2(a). Our system
could be queried via a simple keyword search and by in-
teracting with the user interface as shown in Figure 2 or
directly via SRQL queries. As a first step, it seems useful to
kick off the discovery session with a simple search for tables
that contain “Employee” in their name. In SRQL, this query
is expressed as follows:

res = api.table_name_search("Employee")

A table named Employee directory.csv appears in the out-
put. To double check the relevance, we inspect the schema
too, so that we quickly gain an idea of its content. With
this first successful search, we move onto finding tables that
contain information related to “degree”. For that, instead of
searching for tables with those keywords in them, we search
for attributes named like that.

res = api.schema_name_search("degree")

In this case, the output has a higher cardinality. Many
tables appear that contain attributes with the chosen key-
words. There are two particular tables that contain an at-
tribute“Is Degree Granting”that seems relevant in this case.

1641

Employee

Join	Path	ID Cardinality Cleanliness Ranking Action

1 6319 0.952536 6019.07 Show

2 8087 0.965219 7805.73 Show

3 8297 0.960039 7965.44 Show

(a) Table and Join Path Selection

Employee

Table	ID Row Column Impact Value Action

1 1169	 11	 0.965677	 Unknown	 Get	Row

1 1169	 9	 0.965677	 Not	available	 Get	Row

1 9510	 11	 0.965677	 Unknown	 Get	Row

1 6082	 7 0.960111	 9999999999	 Get	Row

1 10178	 7 0.960059	 1111111111	 Get	Row

(b) On-Demand Cleaning

Figure 2: Demonstration Overview

However, both tables seem to refer to different semantics.
Which one is the appropriate one? One advantage of the
SRQL algebra is that it permits users to incorporate all the
intuition they have into a more refined query. For example,
we know that the table we are looking for must be associ-
ated to departments. We can write this more refined query
to capture this intuition:

res1 = api.schema_name_search("degree")

res2 = api.table_name_search("department")

res3 = api.intersection(res1, res2)

Not only we are interested in tables with attributes related
to degrees, but also those that are related to departments,
and in particular, the intersection of both. The output of
this more refined query seems promising. So we put it apart.
We have found so far two tables that seem to be relevant.
The next step is to find a strategy to join them together.

3.2 Finding Candidate Views
At this point we have found two tables that seem to con-

tain the information we need. Our next step is to join them
together into a view that we can use to answer our original
question. We can define an SRQL query that finds JOIN
PATHS between arbitrary sets of attributes, for example,
between two tables, as follows:

drs_t1 = api.drs_from_table("Employee_directory.csv")

drs_t2 = api.drs_from_table("Sis_department.csv")

res = api.paths_between(

drs_t1, drs_t2, Relation.PKFK, max_hops=2)

The above query is used for join path selection shown in
Figure 2(a). The query takes two sets of attributes, repre-
senting the source and target tables, respectively, and Data
Civilizer finds paths between these sets of attributes ac-
cording to a PK-FK relationship. Optionally, we can also
define the maximum number of hops we are willing to take.
The output of this query is shown in Figure 2(a). There are
3 different join paths between the tables, or 3 different ways
of creating the view. Which one should we use?

3.3 Choosing the Best View
The join path selection component of Data Civilizer

provides the user with a ranking of the suggested join paths
based on their cardinality and cleanliness (as explained in
Section 2.2). Figure 2(a) shows the suggested join paths

after sorting them based on the cardinality and the clean-
liness. The user will select the most relevant join paths to
the task at hand.

3.4 On-Demand Cleaning
After selecting a join path, the data in the returned view

needs to be cleaned before making any conclusions. For this
purpose, a set of dirty cells (selected as described in Sec-
tion 2.3) is returned to the user who will clean them up
to the available budget. The cleanliness estimation compo-
nent of Data Civilizer computes the impact of cleaning
each data cell. Data Civilizer gives the user the informa-
tion in Figure 2(b) and allows her to retrieve and clean the
tuples that include the dirty cells. Since this process may
be performed in multiple iterations, once a set of updates
are applied to the data, the different cleanliness scores may
change and hence the set of source cells to be cleaned first
may also change. Cleaned data is pushed downstream for
use by future queries.

4. REFERENCES
[1] D. Agrawal, M. L. Ba, L. Berti-Equille, S. Chawla,

A. K. Elmagarmid, H. Hammady, Y. Idris, Z. Kaoudi,
Z. Khayyat, S. Kruse, M. Ouzzani, P. Papotti,
J. Quiané-Ruiz, N. Tang, and M. J. Zaki. Rheem:
Enabling multi-platform task execution. In SIGMOD
2016.

[2] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova.
Data integration for the relational web. PVLDB,
2(1):1090–1101, 2009.

[3] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
A. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang. The Data Civilizer
System. In CIDR, 2017.

[4] J. Duggan, A. J. Elmore, M. Stonebraker,
M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. B. Zdonik. The bigdawg
polystore system. SIGMOD Record, 44(2):11–16, 2015.

[5] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4):3–13,
2000.

1642

