
Exploring the Energy Consumption of Data Sorting Algorithms in Embedded
and Mobile Environments

Christian Bunse Hagen Höpfner Essam Mansour Suman Roychoudhury

School of Information Technology
International University in Germany

Campus 3, 76646 Bruchsal, Germany

first name.last name@i-u.de

Abstract

Most mobile and embedded devices are battery powered.
Hence, their uptime depends on the energy consumptions of
the used components. Developers made much effort to opti-
mize hardware in order to reduce their energy consumption.
However, we show in this paper that one also has to con-
sider energy awareness in terms of software. In this study
we focus on sorting algorithms, which are not only used
directly by the user of a device but also very often implic-
itly by other algorithms. Our experiments show, that differ-
ent sorting algorithms have different energy consumptions.
Furthermore, the experiments show that there is no direct
correlation between the time consumptions (complexity) of
an algorithm and its energy consumption.

1. Introduction and Motivation

Managing data on mobile devices is always character-
ized by handling limited resources like memory, CPU per-
formance, or energy supply. Mobile information systems
should be able to adapt themselves in order to meet the users
requirements. If a maximal uptime of the device is required,
the user would (perhaps) agree to slow down the system or
to avoid network communications, even if some data gets
outdated. However, in order to realize such a resource sub-
stitution [12] one needs to have a deep understanding of the
interdependencies between the resources and how they are
used. In this paper we analyze the influence of using CPU
and memory on the uptime of devices by measuring the en-
ergy consumptions of different sorting algorithms.

In computer science and mathematics, sorting algorithms
are used to arrange elements in a specific order (e.g., nu-
merical or lexicographical order). Efficient sorting is im-

portant to optimize the use of search and merge algorithms
that require sorted lists. Furthermore, many data(base) man-
agement algorithms that implement join (e.g., Sort-Merge-
Join) or duplicate eliminating set operations implicitly use
sorting algorithms. Even simple operations like SELECT
DISTINCT call a sorting method. Therefore, sorting is a
hot topic since the dawn of computing and are therefore
prevalent in introductory computer science classes. In such
classes students learn about sorting algorithms and their
classification according to the big-O-notation, their best,
worst and average case analysis, as well as time-space trade-
offs, and lower bounds. Students tend to select Quicksort
as the most favorable sorting algorithm. This is also taken
further by the fact that Quicksort is the standard sorting al-
gorithm of many programming languages and libraries.

Although, the appraisal of Quicksort is not wrong from
the performance viewpoint. However, it does not reflect
the complete picture especially with respect to energy con-
sumption when executing a specific piece of software. Typ-
ically, there is a strong believe that software energy con-
sumption is directly related to software performance (i.e.,
the number of processor cycles directly determines energy
consumption). However, other factors such as memory us-
age or recursion do have an impact, too. The experiments
described within this paper show that, at least for specific
processor families, Quicksort might be the fastest sorting
algorithm but not the most energy-saving one. The exper-
iments show that Insertionsort provides the best rationale
between performance and energy consumption.

The remainder of this paper is structured as follows: Sec-
tion 2 lists related works. Section 3 briefly introduces the
sorting algorithms researched for this paper. Section 4 de-
scribes the experimental setup. Section 5 presents the re-
sults of our experiments. Section 6 summarizes and con-
cludes the paper and gives an outlook on future research.



2. Related Work

Due to the orientation towards mobile- and embedded-
based systems, several research efforts have investigated
into the topic of energy consumption. Optimizing energy
consumption is one of the fundamental factors for an ef-
ficient battery-powered system. Jain et al. [14] classified
these research efforts into four levels of abstraction; the
logic design level, the processor level, the operating sys-
tem level and the compiler level. However, we have classi-
fied the research in energy consumption into the two main
categories software and hardware. The research, which be-
longs to the hardware category, attempts to optimize the en-
ergy consumption by investigating the hardware usage, such
as [7, 19], and innovating new hardware devices and tech-
niques, such as [29, 31].

The research in second category attempts to understand
how the different methods and techniques of software and
data management affecting the energy consumption in order
to achieve a higher power saving. We have classified the re-
search work of this category according to the main factors
affecting the energy consumption. These factors are net-
working, communication, application nature, memory man-
agement, and algorithms.

In networking, different research efforts, such as [9, 24],
provide new routing techniques that are aware of the en-
ergy consumed during routing packets. Others efforts of
this category focus on providing energy-aware protocols for
transmitting data in wireless networks generally, such as
[23, 27], and ad-hoc networks, such as [10]. One of the
fundamental techniques proposed to reduce communication
is caching technique. The efforts belonging to the commu-
nication category introduced several energy-aware caching
techniques, such as [26, 4, 32].

Due to Java platform independence, many applications
are Java-based. In application nature, we consider the re-
search efforts investigating into the topic of energy con-
sumption for the java-applications and java virtual machine,
such as [25, 16, 3, 8]. Memory energy is one of the major
energy, which is to be saved. In memory management, sev-
eral research efforts, such as [15, 21], have provided energy-
aware memory management.

In battery-powered systems, it is not enough to analyze
algorithms based only on time and space complexity. In
the algorithms category, several research proposed energy-
aware algorithms for specific functionalities, such as [14]
supporting randomness, [22] focusing on cryptographic,
and [28] investigating into wireless sensor networks.

The contribution of this paper is the analysis of the en-
ergy consumption for sorting algorithms. This paper be-
longs to the algorithms category. There has been hardly any
research on the impact of sorting algorithms with respect
to energy consumption. In addition to our recent study on

sorting algorithms, we had previous focused on dynamic
strategies like resource substitution as means of saving en-
ergy [12, 6]. Measurements by other researcher show, that
substituting resources might save much energy. The authors
of [30] found out that compressing a file by more then 10%,
transmitting and decompressing it requires less energy than
transmitting it uncompressed.

3. Sorting Algorithms

Sorting appears to be “easy” but its efficient execution
by machines is inherently complex. Even today, sorting al-
gorithms are still being optimized or even newly invented.
When it comes to mobile systems and information retrieval
efficient sorting is a major concern concerning performance
and energy consumption. In the following we describe the
set of sorting algorithms that were used in the context of
this study. This set was defined to comprise the major algo-
rithms that are either used in form of library functions (e.g.,
Quicksort), are easily programmable (e.g., Bubblesort) or
that are regularly taught to IT students. In other words, our
goal was to cover those algorithms that are in widespread
use. More details on them can be found in standard text
books on algorithms and data structures such as [17].

Bubblesort is a simple sorting algorithm that belongs to
the family of comparison sorting. It works by repeatedly
stepping through the list to be sorted, comparing two items
at a time and swapping them if they are in the wrong order.
Bubblesort has a worst-case complexity O(n2) and in the
best case O(n). Its memory complexity is O(1).

Heapsort is a comparison-based sorting algorithm, and is
part of the Selectionsort family. Although somewhat slower
in practice on most machines than a good implementation of
Quicksort, it has the advantage of a worst-case O(n log n)
runtime.

Insertionsort is a naive sorting algorithm that belongs to
the family of comparison sorting. In general Insertionsort
has a time complexity of O(n2) but is known to be effi-
cient on data sets which are already substantially sorted. Its
average complexity is n2/4 and linear in the best case. Fur-
thermore Insertionsort is an in-place algorithm that requires
a constant amount O(1) of memory space.

Mergesort belongs to the family of comparison-based
sorting. It has an average and worst-case performance of
O(n log n). Unfortunately, Mergesort requires three times
the memory of in-place algorithms such as Insertionsort.



Quicksort [11] belongs to the family of exchange sort-
ing. On average, Quicksort makes O(n log n) comparisons
to sort n items, but in its worst case it requires O(n2) com-
parisons. Typically, Quicksort is regarded as one of the most
efficient algorithms and is therefore typically used for all
sorting tasks. Quicksort’s memory usage depends on fac-
tors such as choosing the right Pivot-Element, etc. On av-
erage, having a recursion depth of O(log n), the memory
complexity of Quicksort is O(log n) as well.

Selectionsort belongs to the family of in-place compari-
son sorting. It typically searches for the minimum value,
exchanges it with the value in the first position and repeats
the first two steps for the remaining list. On average Selec-
tionsort has a O(n2) complexity that makes it inefficient on
large lists. Selectionsort typically outperforms Bubblesort
but is generally outperformed by Insertionsort.

Shakersort [5] is a variant of Shellsort that compares
each adjacent pair of items in a list in turn, swapping them
if necessary, and alternately passes through the list from the
beginning to the end then from the end to the beginning. It
stops when a pass does no swaps. Its complexity is O(n2)
for arbitrary data, but approaches O(n) if the list is nearly
in order at the beginning.

Shellsort is a generalization of Insertionsort. The algo-
rithm belongs to the family of in-place sorting but is re-
garded to be unstable. The algorithm performs O(n2) com-
parisons and exchanges in the worst case, but can be im-
proved to O(n log2 n). This is worse than the optimal com-
parison sorts, which are O(n log n). Shellsort improves In-
sertionsort by comparing elements separated by a gap of
several positions. This lets an element take “bigger steps”
toward its expected position. Multiple passes over the data
are taken with smaller and smaller gap sizes. The last step
of Shell sort is a plain Insertionsort, but by then, the array
of data is guaranteed to be almost sorted.

4. Experimental Setup

In order to evaluate the actual energy consumption of a
processing core executing a certain software artifact a spe-
cific evaluation platform is needed. Energy consumption
cannot be measured directly at the boards power supply due
to various consumers (LEDS, transformers, etc.). We devel-
oped a evaluation/measurement platform that directly cap-
tures the energy consumption of the core processor (CPU)
of an embedded system. It logs all measurement as well as
the time the measurement was made to a log file. The log
file is then used as basis for calculating the actual energy

consumption of the system. In principle, the data acquisi-
tion rate should be adjustable. On the one hand this allows
to measure energy consumption of single function calls, and
on the other hand this allows capturing the energy consump-
tion of long-running programs.

Platform Computerp

Data Acquisition
Digital Oscilloscope

& Logger
Measurement Add‐On

Energy Calculation

Evaluation Board
Results DB

Program
Pool

Galvanic Separation

Figure 1. Platform Overview

Figure 1 shows an overview of the energy measurement
platform. The reason for choosing a micro controller is
twofold. First, they are in widespread use for embedded
applications and second, they do not require an operating
system to perform. Thus, measurements can be directly
mapped to a specific software artifact (part of) without in-
cluding effects or (hidden) tasks of the operating system.

The chosen evaluation board (i.e., STK500 or STK501
depending on the processors type) is flashed with an .hex
image file using ATMEL’s AVRStudio [1]. Once flashed
and rebooted the program is automatically started. Every
program sends a TTL level signal [18] at the start and end
of its run. This signals are fed into the digital oscilloscope
to trigger measurement and logging. Triggering was chosen
in order to concretely and correctly measure energy related
data of a program run. During program run, the digital os-
cilloscope measures the voltage drop at a sense resistor em-
bedded into an add-on board (used to ease the change of
processors, provide measurement points, etc.) and logs this
data to a file. The collected data is then processed in order
to calculate the consumed energy values which are finally
stored.

4.1. Measurement Theory

Unfortunately, energy consumption cannot be directly
measured since it is a function over time. However, energy
consumption, measured in Joule, can indirectly be mea-
sured by tracking the power PCORE that is consumed by



the processor core. This power is the product of the core
voltage UCORE and the current flow ICORE:

PCORE = UCORE · ICORE (1)

According to Kirchhoff’s laws, the amperage or current that
is required by the core ICORE equals the current through a
sense resistor RSENSE :

ICORE = ISENSE (2)

Following Ohm’s law ISENSE equals the quotient of the
voltage USENSE that is measured and the resistor value
RSENSE. Thus, ISENSE can be calculated by:

ISENSE =
USENSE
RSENSE

(3)

Using Formulas 2 and 3 in Formula 1 thus yields:

PCORE = (U − USENSE) · USENSE
RSENSE

=

(
U · USENSE − U2

SENSE

)
RSENSE

(4)

The energy that is consumed by the processor is represented
by the integral of the power PCORE over time t. When
using Formula 4 the consumed energy can be computed by
measuring the voltage drop at the sense resistor over time t:

E =
∫

PCORE (t) dt =
∫

U · USENSE − U2
SENSE

RSENSE
dt

(5)
Using mathematical laws this can be simplified to:

E =
1

RSENSE
·
∫ (

U · USENSE (t) − U2
SENSE (t)

)
dt

=
1

100Ω
·
∫ (

4.93V · USENSE (t) − U2
SENSE (t)

)
dt

=
1

100Ω
∆t ·

t
∆t∑

n=0

4.93V · USENSE (n · ∆t)

−U2
SENSE (n · ∆t)

Whereby RSENSE equals 100Ω, U, as provided by the sta-
bilized power supply, equals 4.93V, and n represents the
number of samples per second that are collected by the data
acquisition hardware. Furthermore, the sum transforma-
tion assumes that the time interval for one sample results
to ∆t = 1s

n .

4.2. Evaluation Board

The Atmel AVR R© STK500 board [2], suitable for devel-
oping software systems for AVR Flash micro-controllers,

was chosen as the basis for the energy consumption mea-
surement platform. It supports a variety of processors
including the ATtiny and AT90 series, as well as sup-
port for various ATMega processors (e.g., ATmega8, AT-
mega8515, ATmega16, ATmega32, . . . ). In combination
with the STK501 expansion board, there is even support
for TQFP packages such as those for the ATMega103 or
ATMega128). The STK500 board provides several mea-
surement points and jumpers (e.g. for testing the board
elements such as core or peripherals). Using the standard
power supply one possible measurement point is the VTAR-
GET jumper. VTARGET controls the operating voltage for
the board. Unfortunately, the jumper control the operating
voltage for all elements of the board including LEDs. Thus
measurement data obtained at this jumper might mislead.
Therefore, we decided to directly measure the core current.
As the STK500 does not provide a measurement point for
measuring the core current directly, a measurement add-on
board that provides such a point was created. This add-
on board also provides a sense resistor, RSENSE = 100Ω,
through which power is fed to the core. The voltage drop at
this resistor is used to measure the actual core amperage.

4.3. Measurement

In the context of this paper we conducted two different
experiment series. The first series measured the energy con-
sumption of different sorting algorithms with fixed size data
(integer values), running on different AVR processors (e.g.,
ATMega 16, 32, and 128). The second series examined the
same algorithms but with varying data sizes (array lengths
from 0 to 1,000) that were executed on a ATMega128 pro-
cessor. In addition, we equipped the processor with external
SRAM (64 Kbyte) by adding an IDT 71124 memory chip
to the STK501, to evaluate the impact of external storages.

Both series measured the consumed energy (in Joule)
for every algorithm concerning the use of random (equiv-
alent for all algorithms), pre-sorted and reverse sorted data
to cover best, average and worst case scenarios. To level-out
measurement errors each measurement cycle covers multi-
ple executions of the algorithm using the same data.

In addition we rerun the second series using float val-
ues instead of integers. This was done in order to confirm
the findings obtained in [13] concerning the impact of data
types onto energy consumption. Results of all runs are pre-
sented in the following section.

5. Measurement Results

This section discusses the results of the different exper-
imental runs concerning the energy consumption of sorting
algorithms. Please note that all figures in this section use
accumulated, non normalized values. Results are sums of



measurements results of random, sorted and reverse-sorted
data and are accumulated for 1,000 cycles (1st series) or 500
cycles (2nd and 3rd series).

5.1. 1st Series Results

The first experiment series was performed in order to
evaluate if software energy consumption, as widely be-
lieved, is strongly correlated to software performance (i.e.,
the number of execution cycles is solely responsible for en-
ergy consumption). Therefore we executed a number of
standard sorting algorithms on different processors of the
same processor family (i.e., AVR), whereby the consumed
energy (see Figure 2), the execution time (see Figure 3) as
well as the number of cycles (see Figure 4) were measured.
The latter two were obtained by using the AVR simulator of
AVRStudio.

7

8

6

7

4

5

3

4

ATMega16

ATMega32

2

ATMega32

ATMega128

0

1

0

Figure 2. Energy Consumption in Joule

Initially, the results regarding the energy consumption
of different sorting algorithms reveal that, in contrast to
our assumption, sorting algorithms such as Insertionsort
(Complexity of O(n2)) require significant less energy than
high-performance algorithms such as Quicksort (Complex-
ity of O(n log n)). When looking at the measurement re-
sults in detail (see Table 11) it is obvious that this observa-
tion is valid and visible across different processors of the
same family. Another observation is that energy consump-
tion grows with the inbuilt flash memory size (15 KByte,
32 KByte, and 128 KByte). Interestingly, recursive Quick-
sort outperforms Insertionsort when running on the AT-
Mega16 but is clearly behind at all other platforms. The rea-

1”Empty” table cells represent the missing of results for algorithms that
could not be successfully executed on a specific processor. For example it
was not possible to use the recursive Mergesort for sorting 1,000 integer
values on the ATMega16 since the system ran out of memory

son is that both the table as well as the figure represent the
accumulated values (random, sorted, reverse sorted), and re-
cursive Quicksort failed (out of memory) to sort the sorted
and reverse sorted data. Therefore the presented value is
much lower.

ATMega 16 ATMega 32 ATMega 128
Quicksort 1.755812443 2.810119993 6.286183061
Rec. Quicksort 0.291297773 1.740904365 1.342775090
Heapsort 2.322971333 2.400955424 1.415536144
Selectionsort 4.578156931 4.799888724 7.346836611
Insertionsort 0.846760420 0.892424873 0.193540497
Bubblesort 3.320823135 3.474285035 5.009593535
Rec. Mergesort n.a. 2.518289575 3.794298385
Mergesort 1.208766752 1.261702605 1.770662786
Shakersort 1.236529835 1.286544273 0.123606970
Shellsort 1.189738359 1.252544965 0.867869552

Table 1. Energy Consumption in Joule

Concerning execution time (Used clock speed is 4 MHz)
and the number of cycles, measured by using the AVR Sim-
ulator, the results are as expected. Although the data shows
some variation (based on known bugs of the simulator) in
general execution times as well as cycles are equivalent
across processors. This was expected since all processors
share the same underlying general processor architecture
(32-Bit RISC architecture).

450000000.00

500000000.00

350000000 00

400000000.00

300000000.00

350000000.00

200000000.00

250000000.00

ATMega16

ATMega32

100000000.00

150000000.00
ATMega32

ATMega128

0 00

50000000.00

0.00

Figure 3. Execution Time in ms

When looking at the detailed measurement results (see
Table 2) we can see that execution time follows the com-
plexity class of the algorithms. However, it is interesting
to see the differences in execution time between recursive
(tuned) and non-recursive variants of the same algorithms
(e.g., Quicksort). This leads to the assumption that the use
of recursion might improve performance, but will defini-
tively increase energy consumption.



ATMega 16 ATMega 32 ATMega 128
Quicksort 2520.00 259640.00 237534.00
Rec. Quicksort 33120.00 32240.00 201320.00
Heapsort 224920.00 224920.00 224920.00
Selectionsort 442040.00 444120.00 443720.00
Insertionsort 81640.00 81600.00 81640.00
Bubblesort 321320.00 321320.00 321320.00
Rec. Mergesort 44920.00 233920.00 233920.00
Mergesort 118400.00 118400.00 118400.00
Shakersort 117400.00 117400.00 117400.00
Shellsort 115800.00 115800.00 115800.00

Table 2. Execution Time in ms

450000000.00

500000000.00

350000000 00

400000000.00

300000000.00

350000000.00

200000000.00

250000000.00

ATMega16

ATMega32

100000000.00

150000000.00
ATMega32

ATMega128

0 00

50000000.00

0.00

Figure 4. Used CPU Cycles

5.2. 2nd Series Results

The second experiment series had two different goals:
First, to measure the energy consumption of sorting algo-
rithms for growing data sizes (i.e., number of elements to
be sorted). Second, to evaluate the impact of using exter-
nal memory on energy consumption (i.e., beyond the energy
needed for powering the memory chip).

Concerning the first goal, we measured the energy con-
sumption of a algorithm subset of the first run (wrt. random,
sorted and reverse sorted data) for increasing length of data
(0 - 1,000 elements). The subset comprises Quicksort (stan-
dard and refined), Mergesort (standard and refined), as well
as Insertionsort. In general, sorting varying (probably large)
data sizes may require a huge amount of memory especially
when it comes to recursive and non in-place algorithms.

The obtained measurement results (see Figure 5) in gen-
eral confirm the results of the previous experiment series by
showing that Insertionsort consumes significantly less en-
ergy than other algorithms such as Quicksort or Mergesort,

although these belong to another (better2) complexity class.
Regarding the second goal, we extended the micro-

processor’s inbuilt SRAM memory (from 4 KByte to
132 KByte) by integrating an external memory chip (i.e.,
K6R1008C1C-JC12) to the evaluation board. At a first
glance (comparing data of run 1 and 2) it is obvious that
using external memory requires significantly more energy
(i.e., for Insertionsort the energy consumption for sort-
ing 1000 random elements raised from 0.03 to 4.11 Joule
(500 execution cycles). The difference cannot be explained
by the standard energy the additional chip requires since
the differences between both curves strongly diverge with
growing data size. This supports our assumption that mov-
ing data to/from external memory and addressing/manag-
ing these additional memory cells has a price and should be
considered when planning a system.

0

10

20

30

40

50

60

1
0

5
0

9
0

1
3
0

1
7
0

2
1
0

2
5
0

2
9
0

3
3
0

3
7
0

4
1
0

4
5
0

4
9
0

5
3
0

5
7
0

6
1
0

6
5
0

6
9
0

7
3
0

7
7
0

8
1
0

8
5
0

8
9
0

9
3
0

9
7
0

Jo
u
le

Quicksort

R-Quicksort

Insertionsort

Mergesort

R-Mergesort

Figure 5. Comparison of Sums (rand, sort,
rev)

In order to visualize the differences between algorithms
and to indicate the growth of energy consumption we inter-
polated trend functions for each algorithm while watching
the related square of the correlation coefficient, represent-
ing the quality of the trend, which should be as close as
possible to one. It appears that for most cases these func-
tions are quadratic (e.g., the trend function of Quicksort is
t(x) = x1.1388 ·0.1533, where x is the number of processed
data items). The curves of these trend functions, using val-
ues between 0 an 10,000, are shown in Figure 6. Although
growth and differences are nicely visualized the trend func-
tions cannot be used for estimation purposes.

An interesting result shown in Figure 5 is that the en-
ergy consumption of ”high-performance” algorithms such
as Quicksort or Mergesort are quite close. In addition the
curves related to Quicksort show several peaks due to large

2In fact, sorting 1,000 randomized elements with Insertionsort took
71.3 ms, whereas Quicksort needed 8.8 ms.



0

2000

4000

6000

8000

10000

12000

14000
0

4
1

0

8
2

0

1
2

3
0

1
6

4
0

2
0

5
0

2
4

6
0

2
8

7
0

3
2

8
0

3
6

9
0

4
1

0
0

4
5

1
0

4
9

2
0

5
3

3
0

5
7

4
0

6
1

5
0

6
5

6
0

6
9

7
0

7
3

8
0

7
7

9
0

8
2

0
0

8
6

1
0

9
0

2
0

9
4

3
0

9
8

4
0

Trend - QS

Trend - RQS

Trend - Insertion

Trend - Mergesort

Trend - RMerge

Figure 6. Trends

shifts within memory. These characteristics can be utilized
in the context of managing energy consumption based on
user profiles. If a user decides that he would like to use a
high-performance algorithm while, at the same time, opti-
mizing energy consumption the curves can be used to select
the ”best” algorithm, user-driven depending on the size of
the data to be sorted. In detail, the plan is to use quasi-
interpolations based on trigonometric splines to interpolate
the function of each curve. These functions can then be used
as ”cost functions” at runtime.

However, before generalizing the obtained results by us-
ing cost functions, etc. we have to state that currently all
results are limited to the AVR processor family. Gener-
alization requires to rerun the experiments using different
processor families.

5.3. Impact of Data types

According to [13] the energy consumption of an MPEG-
algorithm was largely affected by the used data types (e.g.,
by replacing double by float the algorithm’s energy con-
sumption was reduced to 34% and the required number of
cycles reduced to 35%. Following these ideas we are cur-
rently rerunning the 2nd experiment series using float in-
stead of integer values. Initial results (see Figure 7) show
that although data sizes were simply doubled (i.e., 2-Byte
integer was replaced by 4-Byte floating point numbers), the
algorithm requires significantly more energy. Interestingly,
the differences are not simply correlated with a factor of
two. Beneath additional memory requirements one reasons
for this growth might also be the realization of the floating
point unit (FPU) of the processor. AVR processors do not
have a physical (i.e., hardware) FPU, but provide a software
based simulation. This software FPU might be responsi-
ble for the extremely high energy requirements. In sum-
mary, the initial results indicate, that for developing energy-

efficient applications it is important to select appropriate
data types. This has not only an impact on stored data but
also on the definition of hash functions, etc.

0

20

40

60

80

100

120

140

160

1
0

5
0

9
0

1
3
0

1
7
0

2
1
0

2
5
0

2
9
0

3
3
0

3
7
0

4
1
0

4
5
0

4
9
0

5
3
0

5
7
0

6
1
0

6
5
0

6
9
0

7
3
0

7
7
0

8
1
0

8
5
0

8
9
0

9
3
0

9
7
0

Jo
u
le

Integer

Float

Figure 7. Insertionsort: Float vs. Integer

6. Summary, Conclusions and Outlook

The overall goal of our research is to realize mobile in-
formation systems that adapt their resource usage with re-
gard to the users requirements. So far, such adaptations
were mostly researched on the hardware level only. In this
paper and its underlying experiments we analyzed the en-
ergy consumptions of sorting algorithms, as this class of
algorithms is essential for managing data. Based on the
findings of Marwedel [20] and our measurement results we
see that memory requirements are crucial concerning en-
ergy consumption. Therefore, in-place sorting algorithms
such as Insertionsort are more energy efficient than oth-
ers. Furthermore, we discussed first experiments that show
that not only the algorithm themselves but also the used
data types influence the energy consumptions. We assume
that processing floating point numbers requires more en-
ergy than processing integer values. However, more precise
evaluations on this are part of ongoing research. Further-
more, we currently implement more complex algorithms
like Sort-Merge-Joins and Nested-Loop-Join in order to
measure their energy consumptions. In addition we plan
experiments with more complex hardware platforms like
ARM based systems and will also use mobile phones and
PDAs in order to reach a more general understanding of the
energy consumptions of algorithms.

References

[1] AVR Studio 4 . Product Website, Mar. 2009.
http://atmel.com/dyn/products/tools_
card.asp?tool_id=2725.



[2] Atmel Corporation, San Jose, Ca, USA. AVR R© STK500
User Guide, Oct. 2008. available online www.atmel.
com/atmel/acrobat/doc1925.pdf.

[3] C. Badea, A. Nicolau, and A. V. Veidenbaum. Impact of
JVM superoperators on energy consumption in resource-
constrained embedded systems. ACM SIGPLAN Notices,
43(7):23–30, July 2008.

[4] A. Bardine, P. Foglia, G. Gabrielli, and C. A. Prete. Analysis
of static and dynamic energy consumption in NUCA caches:
initial results. In Proc. of the workshop on memory perfor-
mance: dealing with applications, systems and architecture,
pages 105–112. ACM, 2007.

[5] B. Brejová. Analyzing variants of Shellsort. Information
Processing Letters, 79(5):223–227, 2001.

[6] C. Bunse and H. Höpfner. Resource substitution with com-
ponents — Optimizing Energy Consumption. In Proc. of
the 3rd ICSOFT, volume SE/GSDCA/MUSE, pages 28–35,
Setúbal, Portugal, July 2008. INSTICC press.

[7] J.-J. Chen and L. Thiele. Expected system energy consump-
tion minimization in leakage-aware DVS systems. In Proc.
of the 13th ISLPED, pages 315–320. ACM, 2008.

[8] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M. An-
derson. Quantifying the energy consumption of a pocket
computer and a Java virtual machine. In Proc. of the 2000
ACM SIGMETRICS intern. conference on measurement and
modeling of computer systems, pages 252–263. ACM, 2000.

[9] L. M. Feeney. An Energy Consumption Model for Perfor-
mance Analysis of Routing Protocols for Mobile Ad Hoc
Networks. Mobile Networks and Applications, 6(3):239–
249, June 2001.

[10] S. Gurun, P. Nagpurkar, and B. Y. Zhao. Energy consump-
tion and conservation in mobile peer-to-peer systems. In
Proc. of the 1st intern. workshop on decentralized resource
sharing in mobile computing and networking, pages 18–23.
ACM, 2006.

[11] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10–15,
1962.

[12] H. Höpfner and C. Bunse. Ressource Substitution for the
Realization of Mobile Information Systems. In Proc. of
the 2nd ICSOFT, volume Software Engineering, pages 283–
289, Setúbal, Portugal, July 2007. INSTICC press.

[13] T. Hüls. Optimizing the energy consumption of an MPEG
application. Master’s thesis, TU Dortmund, Fakultät
für Informatik, Dortmund, Germany, Mar. 2002. online
available at http://ls12-www.cs.tu-dortmund.
de/publications/theses/downloads/huels.
pdf.gz.

[14] R. Jain, D. Molnar, and Z. Ramzan. Towards understanding
algorithmic factors affecting energy consumption: switching
complexity, randomness, and preliminary experiments. In
Proc. of the 2005 joint workshop on foundations of mobile
computing, pages 70–79. ACM, 2005.

[15] H. Koc, O. Ozturk, M. Kandemir, S. H. K. Narayanan,
and E. Ercanli. Minimizing energy consumption of banked
memories using data recomputation. In Proc. of the ISLPED,
pages 358–362. ACM, 2006.

[16] S. Lafond and J. Lilius. Energy consumption analysis for
two embedded Java virtual machines. Journal of Systems
Architecture, 53(5-6):328–337, 2007.

[17] R. Lafore. Data Structures and Algorithms in Java. SAMS
Publishing, Indianapolis, Indiana, USA, 2nd edition, 2002.

[18] D. E. Lancaster. TTL Cookbook. Sams, May 1974.
[19] N. Liveris, H. Zhou, and P. Banerjee. A dynamic-

programming algorithm for reducing the energy consump-
tion of pipelined system-level streaming applications. In
Proc. of the conference on Asia and South Pacific design
automation, pages 42–48. IEEE, 2008.

[20] P. Marwedel. Embedded System Design. Springer, 2007.
[21] O. Ozturk and M. Kandemir. Nonuniform Banking for Re-

ducing Memory Energy Consumption. In Proc. of the con-
ference on design, automation and test in Europe, pages
814–819. IEEE, 2005.

[22] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. A
Study of the Energy Consumption Characteristics of Cryp-
tographic Algorithms and Security Protocols. IEEE Trans-
actions on Mobile Computing, 5(2):128–143, Feb. 2006.

[23] A. Seddik-Ghaleb, Y. Ghamri-Doudane, and S.-M. Senouci.
A performance study of TCP variants in terms of energy
consumption and average goodput within a static ad hoc
environment. In Proc. of the intern. conference on wire-
less communications and mobile computing, pages 503–508,
New York, NY, USA, 2006. ACM.

[24] S.-M. Senouci and M. Naimi. New routing for balanced
energy consumption in mobile ad hoc networks. In Proc. of
the 2nd ACM intern. workshop on performance evaluation
of wireless ad hoc, sensor, and ubiquitous networks, pages
238–241. ACM, 2005.

[25] C. Seo, S. Malek, and N. Medvidovic. An energy consump-
tion framework for distributed java-based systems. In Proc.
of the 22nd int. conference on automated software engineer-
ing, pages 421–424. ACM, 2007.

[26] H. Shen, M. Kumar, S. K. Das, and Z. Wang. Energy-
efficient data caching and prefetching for mobile de-
vices based on utility. Mobile Networks and Application,
10(4):475–486, Aug. 2005.

[27] H. Singh and S. Singh. Energy consumption of tcp reno,
newreno, and sack in multi-hop wireless networks. ACM
SIGMETRICS Performance Evaluation Review, 30(1):206–
216, June 2002.

[28] B. Sun, S.-X. Gao, R. Chi, and F. Huang. Algorithms for bal-
ancing energy consumption in wireless sensor networks. In
Proc. of the 1st intern. workshop on foundations of wireless
ad hoc and sensor networking and computing, pages 53–60.
ACM, 2008.

[29] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger.
A 90nm low-power FPGA for battery-powered applications.
In Proc. of the ACM/SIGDA 14th intern. symposium on field
programmable gate arrays, pages 3–11. ACM, 2006.

[30] J. Veijalainen, E. Ojanen, M. A. Haq, V.-P. Vahteala, and
M. Matsumoto. Energy Consumption Tradeoffs for Com-
pressed Wireless Data at a Mobile Terminal. IEICE Transac-
tions on Communications, E87-B(5):1123–1130, May 2004.

[31] L. Wang, M. French, A. Davoodi, and D. Agarwal. FPGA
dynamic power minimization through placement and rout-
ing constraints. EURASIP Journal on Embedded Systems,
2006(1), 2006.

[32] M. Zhang, X. Chang, and G. Zhang. Reducing cache energy
consumption by tag encoding in embedded processors. In
Proc. of the ISLPED, pages 367–370. ACM, 2007.


