
The VLDB Journal (2014) 23:871–893
DOI 10.1007/s00778-014-0370-1

SPECIAL ISSUE PAPER

ACME: A scalable parallel system for extracting frequent patterns
from a very long sequence

Majed Sahli · Essam Mansour · Panos Kalnis

Received: 23 September 2013 / Revised: 5 April 2014 / Accepted: 29 August 2014 / Published online: 2 October 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Modern applications, including bioinformatics,
time series, and web log analysis, require the extraction of
frequent patterns, called motifs, from one very long (i.e.,
several gigabytes) sequence. Existing approaches are either
heuristics that are error-prone, or exact (also called combina-
torial) methods that are extremely slow, therefore, applicable
only to very small sequences (i.e., in the order of megabytes).
This paper presents ACME, a combinatorial approach that
scales to gigabyte-long sequences and is the first to support
supermaximal motifs. ACME is a versatile parallel system
that can be deployed on desktop multi-core systems, or on
thousands of CPUs in the cloud. However, merely using more
compute nodes does not guarantee efficiency, because of the
related overheads. To this end, ACME introduces an auto-
matic tuning mechanism that suggests the appropriate num-
ber of CPUs to utilize, in order to meet the user constraints
in terms of run time, while minimizing the financial cost of
cloud resources. Our experiments show that, compared to
the state of the art, ACME supports three orders of mag-
nitude longer sequences (e.g., DNA for the entire human
genome); handles large alphabets (e.g., English alphabet for
Wikipedia); scales out to 16,384 CPUs on a supercomputer;
and supports elastic deployment in the cloud.

M. Sahli (B) · P. Kalnis
King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia
e-mail: majed.sahli@kaust.edu.sa

P. Kalnis
e-mail: panos.kalnis@kaust.edu.sa

E. Mansour
Qatar Computing Research Institute, Doha, Qatar
e-mail: emansour@qf.org.qa

Keywords Automatic tuning · Cache efficient · Cloud ·
Elastic ·Motif · Suffix tree

1 Introduction

Applications such as human genome analysis in bioinformat-
ics [30], stock market prediction in time series [22], and web
log analytics [26] require the extraction of frequent patterns
(i.e., motifs) from one very long sequence. This is known as
the repeated motifs problem. Finding repeated motifs is com-
putationally demanding and should not be confused with the
much simpler common motifs problem [24], which focuses
on a dataset of many short sequences. Repeated motif extrac-
tion approaches are classified into two categories: statistical
and combinatorial [5]. The statistical ones rely on sampling
or calculating the probability of motif existence, and trade
accuracy for speed [14]; they may miss motifs (false nega-
tives) or return motifs that do not exist (false-positives). Com-
binatorial approaches [1,9,10], on the other hand, verify all
combinations of symbols and return all motifs that satisfy the
user’s criteria. This paper focuses on the combinatorial case.
Typically, data contain errors, noise, and nonlinear mappings
[31]. Therefore, it is essential to allow occurrences of a motif
to differ slightly according to a distance function.

Example Query Q looks for motifs that occur at least σ = 5
times with a distance of at most d = 1 between a motif and an
occurrence. Let m = GGTGC be a candidate motif. Figure 1
shows subsequences of S that match m. The distance of each
occurrence (e.g., GGTGG) from m is at most 1 (i.e., G instead
of C at positions 5 and 8 in Fig. 1). An occurrence is denoted
as a pair of start and end positions in S. The set of occurrences
for m is L(m) = {(1, 5), (4, 8), (7, 11), (12, 16), (18, 22)},
and the frequency of m is |L(m)| = 5.

123

872 M. Sahli et al.

Fig. 1 Example sequence S over the DNA alphabet, Σ={A,C,G,T}. Five occurrences of motif candidate m = GGTGC are indicated, assuming
distance threshold d = 1. X refers to a mismatch between m and the occurrence. Occurrences may overlap

Compared to the well-studied frequent itemset mining
problem in transactional data, repeated motif extraction has
three differences: (i) Order is important. For example, AG
may be frequent even if GA is infrequent. (ii) Motif occur-
rences may overlap. For example, in sequence AAA, the
occurrences set of motif AA is L(AA) = {(0, 1), (1, 2)}.
(iii) Because of the distance threshold, a valid motif may
not appear as a subsequence within the input sequence. For
example, in sequence AGAG, with frequency and distance
thresholds σ=2 and d=1, TG is a valid motif. Because of
these differences, solutions for frequent itemset mining, such
as the FP-tree [12], cannot be utilized. Instead, all combi-
nations of symbols from the alphabet Σ must be checked.
Assuming the length of the longest valid motif is l, the search
space size is O(|Σ |l).

To avoid the exponential increase in runtime, exist-
ing methods attempt to limit the search space by restrict-
ing the supported motif types [14,17]. FLAME [9], for
instance, searches for motifs of a specific length only. Despite
this restriction, the largest reported input sequence is only
1.3 MB. Another way to limit the search space is by limiting
the distance threshold. For example, MADMX [10] intro-
duced the density measure and VARUN [1] utilized satura-
tion constraints. Both are based on the idea of decreasing
the distance threshold for shorter motifs in order to increase
the probability of early pruning. Nevertheless, the largest
reported input does not exceed 3.1 MB. It must be noted
that MADMX and VARUN support only 4-symbol DNA
sequences. With larger alphabets (e.g., English alphabet),
they would handle smaller sequences in practice, due to
the expanded search space. All the aforementioned meth-
ods are serial. To the best of our knowledge,1 there exists
only one parallel approach, called PSmile [3]. It scales out to
only 4 processors, and the largest reported input is less than
0.25 MB.

This paper presents ACME, a parallel system for motif
extraction from a single long sequence. ACME is the first to
support supermaximal motifs [8]; these are the longest motifs
that are not subsequences of any other. Supermaximal motifs
are very useful in practice because they provide a compact
representation of the set of all motifs. We propose a novel
algorithm that uses a trie to identify supermaximal motifs and

1 There exist several parallel approaches [4,6,7,16] for the much sim-
pler common motifs problem.

avoids the huge overhead of storing all intermediate results.
Additionally, ACME can extract exact-length and maximal
motifs as defined in existing work.

ACME supports large-scale parallelism. It partitions the
search space into a large number (i.e., tens to hundreds
of thousands) of independent tasks and employs a master-
worker approach to facilitate elasticity. During runtime,
ACME can dynamically scale in and out. Idle workers may
leave, and newly added ones request tasks from the mas-
ter, keeping all CPUs busy. Note that, simply running on
more CPUs does not guarantee the efficient utilization of
resources. This is because over-partitioning of the search
space may miss opportunities for early pruning, resulting
in more and unnecessary work for many workers. In cloud
computing environments, in particular, inefficient utilization
of resources results in higher financial costs.

To maximize resource utilization, ACME implements a
novel automatic tuning method. For each query, it generates
a sample of representative tasks that are executed in order to
collect statistics for the expected runtime. Then, the system
runs a set of simulations of a single-queue multiple-server
model, for a varying number of tasks and CPUs. The out-
puts are a good decomposition of the search space, and an
estimation of the expected runtime and speedup efficiency.
The overhead of the auto-tuning process is minimal, but the
benefits are significant: ACME achieves very good load bal-
ancing among CPUs, with almost perfect utilization in most
cases. Moreover, given the pricing model of a cloud provider,
auto-tuning suggests the optimal number of cloud comput-
ing resources (i.e., CPUs) to rent, in order to meet the user
constraints in terms of runtime and financial cost. Our auto-
tuning method is generic and applicable to a variety of archi-
tectures. We successfully deployed ACME on multi-core
shared memory workstations; shared-nothing Linux clusters
(both local and in Amazon EC2); and a large supercomputer
with 16,384 CPUs.

ACME scales to gigabyte-long sequences, such as the
DNA for the entire human genome (2.6 GBps). Similar to
some existing methods, we use a suffix tree [11] to keep
occurrence counts for all suffixes in the input sequence. The
novelty of ACME lies in (i) the traversal order of the search
space and (ii) the order of accessing information in the suffix
tree. Both are arranged in a way that exhibits spatial and tem-
poral locality. This allows us to store the data in contiguous
memory blocks that are kept in the CPU caches and mini-

123

A scalable parallel system 873

mize cache misses in modern architectures. By being cache
efficient, ACME achieves almost an order of magnitude per-
formance improvement for serial execution.

In summary, our contributions are as follows:

– We propose a parallel approach that decomposes the motif
extraction process into fine-grained tasks, allowing for the
efficient utilization of thousands of processors. ACME
scales to 16,384 processors on an IBM Blue Gene/P super-
computer and solves in 18 min a query that needs more
than 10 days on a high-end multi-core machine.

– We develop an automatic tuning method that facilitates
near-optimal utilization of resources and is especially use-
ful for cloud environments.

– We are the first to support supermaximal motifs with min-
imal overhead.

– We develop a cache-efficient search space traversal tech-
nique that improves the serial execution time by almost an
order of magnitude.

– We conduct experimental evaluation with large real
datasets on different architectures, locally and on the
cloud. ACME scales to large alphabets (e.g., English
alphabet for the Wikipedia dataset) and handles three
orders of magnitude longer sequences than our com-
petitors on the same machine. We are the first to sup-
port gigabyte-long sequences, such as the entire human
genome.

The rest of this paper is organized as follows. Sections 2
and 3 present the background and related work. Section 4
presents our algorithm for supermaximal motifs. Section 5
contains the details of our parallel approach. Automatic tun-
ing and elasticity are discussed in Sect. 6, whereas Sect. 7
focuses on our cache-efficient implementation. Section 8
presents the experimental evaluation, and Sect. 9 concludes
the paper.

2 Background

2.1 Motifs

A sequence S over an alphabet Σ is an ordered and finite
list of symbols from Σ . S[i] is the i th symbol in S, where
0 ≤ i < |S|. A subsequence of S that starts at position i
and ends at position j is denoted by S[i, j] or simply by its
position pair (i, j); for example, (7, 11) representsGGTGC in
Fig. 1. Let D be a function that measures similarity between
two sequences. Following the previous work [8,9], in this
paper we assume D is the Hamming distance (i.e., number
of mismatches). A motif candidate m is a combination of
symbols from Σ . A subsequence S[i, j] is an occurrence
of m in S, if the distance between S[i, j] and m is at most

d, where d is a user-defined distance threshold. The set of
all occurrences of m in S is denoted by L(m). Formally:
L(m) = {(i, j)|D(S[i, j], m) ≤ d}.
Definition 1 (Motif) Let S be a sequence, σ ≥ 2 be a fre-
quency threshold, and d ≥ 0 be a distance threshold. A candi-
date m is a motif if and only if there are at least σ occurrences
of m in S. Formally: |L(m)| ≥ σ .

Definition 2 (Maximal motif) A motif m is maximal if and
only if it cannot be extended to the right nor to the left without
changing its occurrences set.

A maximal motif must be right maximal and left maximal
[8]. m is right maximal if L(mα) has less occurrences or
more mismatches than L(m), where α ∈ Σ . Similarly, a
motif m is left maximal if extending m to the left results
in fewer occurrences or introduces new mismatches. There
exists excessive overlapping among maximal motifs, with
lots of short motifs contained in longer ones.

Definition 3 (Supermaximal Motif) Let M be the set of max-
imal motifs from Definition 2 and let m̂ ∈ M . m̂ is a super-
maximal motif, if m̂ is not a subsequence of any other motif
in M . The set of all supermaximal motifs is denoted by Ms .

The number of possible motif candidates is O(|Σ |l),
where |Σ | is the alphabet size and l is the length of the longest
candidate; for a certain σ value, the number of candidates is
upper-bounded by

∑|S|−σ+1
i=1 |Σ |i . To restrict the number of

candidates, previous works have imposed minimum (lmin)
and maximum (lmax) length constraints. The most interest-
ing case is when lmax = ∞. Obviously, this is also the most
computationally expensive case since length cannot be used
for pruning. This paper solves efficiently the following prob-
lem (including the case where lmax = ∞):

Problem 1 Given sequence S, frequency threshold σ ≥ 2,
distance threshold d ≥ 0, minimum length lmin ≥ 2, and
maximum length lmax ≥ lmin; find all supermaximal motifs.

2.2 Trie-based search space and suffix trees

The search space of a motif extraction query is the set of motif
candidates for that query; as mentioned before, the search
space grows exponentially to the length of the longest can-
didate. A combinatorial trie (see Fig. 2) is used as a compact
representation of the search space. Every path label formed
by traversing the trie from the root to a node is a motif can-
didate. Finding the occurrences of each motif candidate and
verifying maximality conditions require a large number of
expensive searches in the input sequence S. To minimize
this cost, a suffix tree [11] is typically used.

A suffix tree is a full-text index that groups identical sub-
sequences. Let q be a query string. Using a suffix tree, we

123

874 M. Sahli et al.

Fig. 2 Partial three levels of the combinatorial search space trie for
DNA motifs, alphabet Σ = {A,C,G,T}

can check whether q appears in S in time linear to the length
of q. Figure 3 shows an example suffix tree. First, the input
string S is appended with a termination symbol $. Then, all
suffixes S[0], S[1], . . . of S are generated. In our example,
S[11] = CGG . . .$ and S[22] = C$ correspond to the suffixes
that start at positions 11 and 22, respectively. All suffixes are
inserted in a Patricia trie, such that a path label from the root
to a leaf corresponds to a suffix. For instance, the path labels
from the root to leaves 3.1 and 3.2 correspond to suffixes
S[22] and S[11], respectively. Observe that the path label
from the root to internal node 3 is C, which is the common
prefix of S[22] and S[11]. The suffix tree is built in linear
time and space as long as S and the tree fit in memory [29].
There are also efficient and parallel suffix tree construction
algorithms [18] for longer sequences.

The suffix tree can be used to verify efficiently if a motif
candidate is a maximal motif. Recall from Sect. 2.1 that a
maximal motif must be left maximal and right maximal.
Federico and Pisanti [8] show how to check these proper-
ties using the suffix tree: (i) A motif m is left maximal if one
of its occurrences corresponds to a left-diverse suffix tree
node. A suffix tree node is left diverse if at least two of its
descendant leaves have different preceding symbols in S. For
example (see Fig. 3), nodes 2.1.3 and 2.4 correspond to
S[12] = GGTGA . . . $ and S[15] = GAT . . . $, respectively.

The preceding symbols in S are S[11] = C and S[14] = T,
that is, they are different. Both 2.1.3 and 2.4 are leaves
under node 2; therefore, node 2 is left diverse. As a coun-
terexample, consider node1.2: its path label,TGC, is always
preceded by G in S; therefore, it is not left diverse. (ii) By
construction, the labels of the children of an internal suffix
tree node start with different symbols. Hence, if a motif has
an occurrence that consumes the complete label of an internal
node, it is right maximal. For example, motif m = GTG con-
sumes the entire path label from the root to node 2.2. The
labels to the children of node 2.2 start with three different
symbols: G, C, and A. Consequently, m cannot be extended
to the right without changing its set of occurrences, so by
definition m is right maximal.

We annotate the suffix tree by traversing it once and storing
in every node whether it is left diverse, and the number of
leaves reachable through it. This number is the frequency of
the node’s path label. For example, node 1.2 in Fig. 3 is
annotated with f = 2 because its path label TGC appears
in S at (9, 11) and (20, 22). For clarity, we do not show the
left-diversity annotation in the figure. For the special case of
exact motifs, where the distance threshold d = 0, the search
space is reduced to the suffix tree [2]. For the general case,
where d > 0, occurrences of a candidate motif are found at
different suffix tree nodes. The frequency of the candidate is
the sum of the frequencies of all these nodes.

Example Assume d = 1, σ = 10 and start a depth-first tra-
versal (DFT) of the search space in Fig. 2. The first candidate
is m = A. Traverse the suffix tree in Fig. 3 and note that the
first symbol from every branch starting at the root differs
from A by at most 1 ≤ d. Therefore, the occurrences set con-
tains the following suffix tree nodes: L(A) = {1,2,3,4}
with total frequency: 7+13+2+1 = 23 ≥ σ . Continue the
DFT in Fig. 2 and generate a new candidate motif m′ = AA.
Search the suffix tree starting from the nodes in L(A). The
path label of suffix tree node 1 is TG; its distance from AA is

Fig. 3 Example sequence over
Σ = {A,C,G,T} and its suffix
tree. $ is the termination
symbol. Squares denote leaves.
Nodes are numbered for
referencing and annotated with
the frequency of their path
labels (number of reachable
leaves). Only part of the tree is
shown; the entire tree would
have 24 leaves (i.e., one for each
of the 23 suffixes plus one for
the termination symbol)

123

A scalable parallel system 875

Table 1 Comparison of
combinatorial motif extractors
for the repeated motif problem

Index Parallel Largest reported input Supported motif types

Exact-length Maximal Supermaximal

FLAME [9] Suffix Tree 1.3 MB �
VARUN [1] N/A 3.1 MB �
MADMX [10] Suffix Tree 0.5 MB �
PSmile [3] Suffix Tree � 0.2 MB �
ACME [our’s] Suffix Tree � 2.6 GB � � �

2 > d, so it is discarded. Next, check all branches of suffix
tree node 2. Its first three children, 2.1, 2.2, and 2.3, are
discarded for exceeding the allowed distance. Child 2.4 is
added to the occurrences set of AA since its path label is GA,
which has distance 1 ≤ d from AA. The rest of the nodes
in L(A) are extended and validated in the same manner. The
resulting occurrences set of m′ is L(AA) = {2.4,4} with
total frequency 1 + 1 = 2 < σ . m′ is not frequent enough,
so the search space is pruned by backtracking to node A in
Fig. 2. Then, DFT generates candidate m′′ = AC, which is
checked in the same way. The process continues until the
search space of Fig. 2 is exhausted.

3 Related work

This section presents the most recent methods for extracting
motifs from a single sequence (i.e., combinatorial repeated
motifs problem); Table 1 shows a summary. Motif extraction
is a highly repetitive process making it directly affected by
cache alignment and memory access patterns. For a motif
extractor to be scalable, it needs to utilize the memory hier-
archy efficiently and run in parallel. Existing methods do
not deal with these issues. Therefore, they are limited to
sequences in the order of a few megabytes [17].

The complexity of motif extraction grows exponentially
with the motif length. Intuitively, extracting maximal and
supermaximal motifs is more complex than exact-length ones
because, if length is known, the search space can be pruned
significantly. FLAME [9] supports only exact-length motifs.
To explore a sequence, users need to run multiple exact-
length queries. VARUN [1] and MADMX [10], on the other
hand, support maximal motifs, without any length restriction.
To limit the search space, VARUN and MADMX assume
that the distance threshold varies with respect to the length
of the current motif candidate. None of these techniques sup-
ports supermaximal motifs; therefore, their output contains
a lot of redundant motifs (i.e., motifs that are subsequences
of longer ones). Despite these restrictions, the length of the
largest reported input was only a few megabytes. It must be
mentioned that none of these methods is parallel.

Parallelizing motif extraction attracted a lot of research
efforts, especially in bioinformatics [3,4,6,7,16,19]. Challa
and Thulasiraman [4] handle a dataset of 15,000 protein
sequences with the longest sequence being 577 symbols only;
their method does not manage to scale to more than 64 cores.
Dasari et al. [6] extract common motifs from 20 sequences
of a total size of 12 KB and scale to 16 cores. This work
has been extended [7] to support GPUs and scaled to 4 GPU
devices using the same dataset. Liu et al. [16] process a 1 MB
dataset on 8 GPUs. DMF, an implementation of Huang’s
work [13], has been parallelized by Marchand et al. [19] to
run on a supercomputer. The aforementioned methods target
the much simpler common motifs problem (i.e., they assume
a dataset of many short sequences), whereas we solve the
repeated motifs problem [24] (i.e., one very long sequence).
Moreover, most of these approaches are statistical. Therefore,
they may introduce false-positive or false-negative results,
whereas we focus on the combinatorial case that guarantees
correctness and completeness.

To the best of our knowledge, the only parallel and combi-
natorial method for extracting motifs from a single sequence
is PSmile [3]. This method parallelizes SMILE [20], an exist-
ing serial algorithm that extracts structured motifs, com-
posed of several “boxes” separated by “spacers” of different
lengths. Intuitively, this corresponds to a distance function
that allows gaps. SMILE (and PSmile) can support the Ham-
ming distance by using only one box and zero-length spacers.
Similar to our approach, PSmile partitions the search space
using prefixes. Their contribution is the heuristic that groups
search space partitions to balance workload among CPUs.
Prefixes are grouped into coarse-grained tasks, and work-
load of different prefixes is assumed to be similar. Based on
this assumption, a static scheduling scheme is used to dis-
tribute the tasks. In the following, we will explain that their
assumption is not satisfied in real datasets; therefore, in prac-
tice, PSmile suffers from highly imbalanced workload and
parallel overhead [28]. PSmile reported scaling to 4 CPUs
only; the maximum input size was 0.2 MB. In contrast, our
approach scales to 16,386 CPUs and can support gigabyte-
long sequences.

In our recent conference paper [25], we introduced CAST,
a cache-aware method for solving the combinatorial repeated

123

876 M. Sahli et al.

motifs problem. CAST arranges the suffix tree in continuous
memory blocks and accesses it in a way that exhibits spatial
and temporal locality, thus minimizing cache misses. As a
result, CAST improves performance of serial execution by
an order of magnitude. Our conference paper also supports
right-supermaximal motifs, which are motifs that are not pre-
fixes of any other. Right-supermaximal motifs remove some
of the redundant maximal motifs that were reported by previ-
ous work. Finally, our conference paper introduced the first
parallel method to scale to thousands of CPUs and gigabyte-
long sequences. The most important issue for good scalability
is to achieve load balance by having a good decomposition
of the search space. In our conference paper, we used a naïve
trial-and-error approach to find a good decomposition for
each query in an ad-hoc manner.

This work extends our conference paper in two ways: (i)
We support supermaximal motifs. Straight-forward calcula-
tion would require keeping track of all maximal ones; this
is too expensive, and therefore, no previous approach sup-
ports such motifs. We propose an algorithm to extract super-
maximal motifs with minimal overhead. (ii) We develop
an automatic tuning process for the partitioning of the
search space in order to scale efficiently to thousands of
CPUs. For each query and dataset, we gather statistics
and build an execution model. We then run simulations
to decide the best partitioning that maximizes the efficient
utilization of available CPUs. In conjunction with a cloud
provider’s pricing scheme, our auto-tuning method can also
be used to minimize the financial cost of deployment on
the cloud, while meeting the user constraints in terms of
performance.

4 Supermaximal motifs

Supermaximal motifs are those that are not contained in
any other motif. They are very useful in practice, since
they provide a compact and comprehensive representation
of the set of all motifs. However, naïve methods that com-
pute supermaximal motifs require to maintain the complete
set of maximal ones [8]. The set of maximal motifs is pro-
hibitively large for typical inputs and queries, and the veri-
fication process is computationally very expensive. For this
reason, none of the existing systems supports supermaximal
motifs.

Below, we propose a novel algorithm for extracting super-
maximal motifs without storing the complete set of interme-
diate results. In the experimental section, we will show that
our algorithm poses minimal overhead, compared to existing
methods that only find maximal motifs. Our solution is based
on the following observations:

Input: Empty trie
Output: Supermaximal motifs

while Workers Exist do1

bu f f er ← ReceiveFromWorker()2

foreach moti f in bu f f er do3
reversed ← Reverse(moti f)4
InsertInTrie(reversed)5

SpellTrieFromLeaves()6

Algorithm 1: Supermaximal Motifs

Observation 1 Let αmβ be a supermaximal motif. The set
of maximal motifs M may contain motifs {α, αm, αmβ, m,
mβ, β}.
Observation 2 The set of supermaximal motifs Ms does
not contain prefixes Mpre = {α, αm}, or suffixes Msu f =
{mβ, β}, or subsequences Msub = {m}.
Example Let the set of maximal motifs for a certain query be
M = {AGTT,GTT,TT,AGT,AG,GT,CTT,CT}. To find the
set of supermaximal motifs Ms , we have to eliminate max-
imal motifs that are subsequences of other ones. Accord-
ing to our observations, (i) Mpre = {AGT,AG,CT}, (ii)
Msu f = {GTT,TT}, and (iii) Msub = {CT,GT}. Therefore,
Ms = {AGTT,CTT}.

During the depth-first traversal of the search space, motifs
that share the same prefix are grouped in the same sub-trie
(see Fig. 2); hence, we are able to easily filter motifs that are
prefixes of other ones. The longest valid branches represent
the set of maximal motifs that do not belong to Mpre or Msub.
We refer to this set as the right-supermaximal [25] set Mrs =
Ms ∪Msu f . In our example, Mrs = {AGTT,CTT,GTT,TT}.
Now, we can find the supermaximal motifs by discarding
all proper suffixes from Mrs . However, computing Msu f is
challenging, because motifs in Mrs belong to different parts
of the search space as they start with different prefixes. A
naïve solution would check all possible pairs in Mrs ; the
complexity of such a solution is O(|Mrs |2).

We propose Algorithm 1, which in the average case
removes redundant suffixes in O(|Mrs | log|Σ | |Mrs |) time.
The algorithm reverses the contents of Mrs , effectively trans-
forming the problem from suffix to prefix removal. As we
mentioned earlier, the latter can be solved efficiently by uti-
lizing a trie.

Figure 4a depicts the Mrs set for our running example;
the conceptually reversed motifs are shown in Fig. 4b. The
reversed motifs are inserted in a trie that is shown in Fig. 4c
and observe that common prefixes are grouped together. In
the trie, each path from the root to a leaf corresponds to a
string that is not a prefix of any other. Our example trie has
two leaves. After reversing back the corresponding paths,

123

A scalable parallel system 877

(a) (b) (c) (d)

Fig. 4 The steps for extracting the set of supermaximal motifs Ms from the set of intermediate results Mrs . a The Mrs set. b Motif in Mrs reversed.
c Trie of reversed motifs. d Supermaximal motifs

Fig. 5 Architecture of parallel
ACME

the final set Ms = {AGTT,CTT} of supermaximal motifs is
shown in Fig. 4d.

The set of supermaximal motifs from Algorithm 1 is cor-
rect and complete. Refer to Appendix 1 for the proof.

5 Parallel motif extraction (FAST)

This section presents FAST,2 our efficient parallel space tra-
versal approach that scales to thousands of CPUs.3 FAST
achieves high degree of concurrency by partitioning the
search space horizontally and balancing the workload among
CPUs with minimal communication overhead.

5.1 System architecture

We adopt the master–worker architecture shown in Fig. 5.
Given C CPUs, one master generates tasks; C − 2 work-
ers request tasks from the master and generate right-
supermaximal motifs; and one combiner receives the inter-

2 FAST stands for fine-grained adaptive sub-tasks.
3 For simplicity, the discussion assumes that each CPU executes a single
process. In practice, our implementation executes one process per core.

mediate results from the workers and extracts supermaximal
motifs. The details are explained below.
Master. First, the master reads the sequence from the disk and
sends it to the workers. Then, it decomposes the search space
and starts generating tasks. The decomposition of the search
space is based on our automatic tuning model, presented in
Sect. 6; its goal is to utilize efficiently the available CPUs.
Given a decomposition, the master uses our FAST technique,
discussed in Sect. 5.4, to generate tasks. Tasks are scheduled
dynamically using pull requests from workers.
Worker. Each worker receives the input sequence and con-
structs the annotated suffix tree (see Fig. 3). Every worker
needs access to the entire suffix tree, because occurrences
of a motif candidate can occur at different branches. Once
the index is ready, the worker requests a task from the mas-
ter. Tasks are processed using our CAST technique to find
right-supermaximal motifs; refer to Sect. 7 for details. The
right-supermaximal motifs from each task are sent to the
combiner in batches. Results within a batch share the same
prefix; therefore, the prefix is stripped to better utilize the lim-
ited buffer space and minimize communication cost. When
a worker is free, it requests a new task from the master. This
simple scheduling scheme allows workers to enter or leave
the system anytime.

123

878 M. Sahli et al.

Combiner. The combiner implements Algorithm 1: it receives
right-supermaximal motifs from all workers and uses a trie
(see Fig. 4c) to generate the final result that is the set of super-
maximal motifs. We will show in the experimental evaluation
that the workload of the combiner is minimal, compared to
the workers. Therefore, the combiner is not a bottleneck and
does not affect the scalability of the system.

5.2 Horizontal search space partitioning

The search space depicted in Fig. 2 can be split into indepen-
dent sub-tries. Parallelizing the trie traversal is easy in this
sense. However, the motif extraction search space is pruned at
different levels during the traversal and validation process.
Therefore, the workload of each sub-trie is not known in
advance. The absence of such knowledge makes load balanc-
ing challenging to achieve. Imbalanced workload affects the
efficiency of parallel systems due to underutilized resources.

FAST decomposes the search space into a large number
of independent sub-tries. Our target is to provide enough
sub-tries per CPU to utilize all computing resources with
minimal idle time. We partition horizontally the search space
at a certain depth l p, into a fixed-depth sub-trie and a set of
variable-depth sub-tries, as shown in Fig. 6; observe that l p

corresponds to the prefix length. Since the search space is
a combinatorial trie, there are |Σ |l p sub-tries. The variable-
depth sub-tries are of arbitrary size and shape due to the
pruning of motif candidates at different levels.

Example Consider the search space for extracting motifs of
length exactly 15 from a DNA sequence (|Σ | = 4). The
search space trie consists of 415 different branches, where
each branch is a motif candidate of length 15. If we choose
to set our horizontal partition at depth 2, our prefixes will
be of length 2 and there are 42=16 large variable-depth sub-
tries. Each sub-trie consists of 413 branches (more than 67
million). If the horizontal partition cuts at depth 8, then there
are 48=65, 536 independent and small variable-depth sub-
tries with 16 thousand branches each.

5.3 Prefix length trade-off

The fixed-depth sub-trie indexes a set of fixed-length pre-
fixes. Each prefix is extended independently to recover a set
of motif candidates sharing this prefix. A false-positive pre-
fix is a prefix of a set of false-positive candidates, which
would be pruned if a shorter prefix was used. For example,
let |Σ | = 4 and let AA be a prefix that leads to no valid
motifs. Using a prefix length of 5 (i.e., horizontal partition-
ing at depth 5) introduces 64 false-positive prefixes that start
with AA. Therefore, although the longer prefix increases the
number of tasks (i.e., increases the degree of concurrency),

Fig. 6 Combinatorial trie partitioned at depth l p = 1 into a fixed-depth
sub-trie leading to four variable-depth sub-tries, which are traversed
simultaneously by two compute nodes

the resulting false-positive prefixes introduce useless over-
head and, consequently, suboptimal utilization of resources.

Observation 3 Given distance threshold d, all prefixes of
length d are valid (i.e., cannot be pruned earlier).

Let S be the input sequence. Any subsequence of S of
length l will not exceed the distance threshold d for all search
space branches of length l as long as l ≤ d. For example, if a
user allows up to 4 mismatches between a motif candidate and
its occurrences, then any subsequence of length 4 from the
input sequence is a valid occurrence of any prefix of length
4 in the search space. Observation 3 means that no pruning
can be done until depth d of the search space, assuming the
frequency threshold is met. We say that the search space
is fully covered at depth d. Figure 7a shows an experiment
where prefixes of length up to 9 symbols are fully covered
although the sequence size is only 1 MB. In this experiment,
the prefix of length 10 leads to more than 0.5M false-positive
prefixes, that is, useless tasks that will be processed.

Observation 4 As the input sequence size increases, the
depth of the search space with full coverage increases.

A longer sequence over a certain alphabet Σ means
more repetitions of subsequences. Therefore, the probabil-
ity of finding occurrences for motif candidates increases.
Our experiments show that, even for a relatively small input
sequence, the search space can be fully covered to depths
beyond the distance threshold. Figure 7b shows an experi-
ment where the number of false-positive prefixes generated
at l p = 10 in the 1 MB sequence decreases by increasing the
sequence size.

Observation 5 If the search space is horizontally parti-
tioned at depth lp, where the average number of sub-tries per
CPU leads to high resource utilization, then a longer prefix
is not desirable to avoid the overhead of false-positives.

5.4 FAST algorithm

FAST generates enough independent tasks per CPU, to max-
imize the utilization of CPUs. A task consists of one or
more sub-tries and is transferred in a fixed-length compact

123

A scalable parallel system 879

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

4 5 6 7 8 9 10

M

ot
if

s
(M

ill
io

n)

Prefix length

Q(|S|=1MB, σ=500, lmin=lmax=var, d=2)

Valid motifs
Full Coverage 4l

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

M

ot
if

s
(M

ill
io

n)

Sequence size (MB)

Q(|S|=var, σ=500, lmin=lmax=10, d=2)

Valid motifs
Full Coverage 410

(b)

Fig. 7 Search space coverage in a DNA sequence. The shaded regions emphasize false-positive prefixes, which increase by increasing the prefix
length and decrease by increasing the input sequence size. a Variable motif length. b Variable sequence size

Input: Alphabet Σ , Number of CPUs C, Task size factor λ

Output: Generate and schedule tasks

// Calculate optimal prefix length
l p ← GetOptimalLength(Σ ,C)1

i ← 0 // An iterator over all prefixes2

// Calculate task size
t ← 	λ|Σ |l p /C
 // one task contains t prefixes3

// Assign tasks
while i �= prefixes end do4

task← GetNextPrefix(i, t)5
WaitForWorkRequest()6
SendToRequester(task)7
i ← i + t8

// Signal workers to end
while worker exist do9

WaitForWorkRequest()10
SendToRequester(end)11

Algorithm 2: Partitioning and Scheduling

form. The master horizontally partitions the search space and
schedules tasks as shown in Algorithm 2. Function GetOpti-

malLength in line 1 calculates the near-optimal prefix length
that will achieve the best load balance; the details will be
explained in Sect. 6. The exact-length prefixes are generated
by depth-first traversal of the fixed-depth sub-trie. An iterator
is used to recover these prefixes by a loop that goes over all
combinations of length l p from Σ . The master process is idle
as long as all workers are busy. Algorithm 2 is lightweight
compared to the extraction process carried out by workers.
Hence, parallelizing the prefix generation does not lead to
any significant speedup.

6 Automatic tuning and elasticity

This section discusses the automatic tuning feature that
allows ACME to utilize efficiently thousands of CPUs. The

section also discusses our elasticity model that suggests the
appropriate amount of cloud resources to rent while meet-
ing the user’s requirements in terms of processing time and
financial cost.

6.1 Problem definition

The goal of automatic tuning is to find a good decomposi-
tion of the search space (i.e., parameter l p) that minimizes
runtime, while achieving high utilization of computational
resources. To minimize runtime, we need to utilize efficiently
as many CPUs as possible, which translates to (i) enough
tasks per CPU, in order to achieve good load balance and
(ii) few false-positives, in order to avoid useless work. As
explained in the previous section, these goals contradict each
other. Therefore, we need to solve the following optimization
problem:

Problem 2 Find the value of parameter l p that maximizes
scalability (i.e., number of CPUs) under the constraint that
speedup efficiency SE ≥ SEmin.

Let C be the number of workers, T1 the time to execute
the query using one worker (i.e., serial execution) and TC the
time to execute the query using C workers. Speedup efficiency
is defined as:

SE = T1

C · TC
(1)

The maximum value for SE is 1, indicating perfect paral-
lelism. In practice, there are always overheads, and therefore,
we require SE ≥ SEmin , where SEmin is a user-defined
threshold. Typically, SEmin = 0.8 is considered good in
practice.

Example Let us consider a query Q that searches a 32 MB
protein sequence (i.e., alphabet size |Σ | = 20) for super-
maximal motifs that appear at least σ = 30,000 times

123

880 M. Sahli et al.

Table 2 Example query Q running on 240 workers

Q(|S| = 32 MB, σ = 30 K, lmin = 7, lmax = ∞, d = 2)

Prefix
length (l p)

Tasks (|Σ |l p) Average tasks/worker Speedup efficiency

2 400 1.66 0.47

3 8,000 33.33 0.91

4 160,000 666.66 0.22

For l p = 2, we cannot achieve load balance. For l p = 4, there are too
many false-positive tasks. The optimal search space decomposition is
found using l p = 3, achieving very good speedup efficiency SE = 0.91

with distance threshold d = 2; the minimum length should
be lmin = 7, and there is no maximum length limit (i.e.,
lmax = ∞). We generated different decompositions of the
search space using l p = 2, 3, 4, executed the query on 240
workers, and measured the run time. The resulting values for
SE are shown in Table 2. When l p = 2, on average there
are only 1.66 tasks per worker, so it is difficult to achieve
load balance; consequently, SE is only 0.47. For l p = 4, on
the other hand, there are a lot of false-positive tasks, result-
ing in very low speedup efficiency (i.e., only 0.22). For this
particular query, the optimal space decomposition is reached
for l p = 3, achieving SE = 0.91, which is very good in
practice. �

Since the processing time of each task is not known in
advance, it is difficult to find an analytical solution for Prob-
lem 2; therefore, our solution is based on heuristics. Note
that the accuracy of the results is not affected; our algorithm
will still return the correct and complete set of supermaximal
motifs. If our heuristics fail to achieve optimal space decom-
position, then only the execution time will be affected, due
to sub-optimal utilization of computational resources.

6.2 Distribution of workload frequency

In the following, we will explain the results of Table 2 by ana-
lyzing the workload frequency distribution of the tasks and
its effect on scalability, for different search space decompo-
sitions. We will reuse the same example query Q from the
previous section.

Let us start with prefix length l p = 2 that decomposes the
search space of Q into 202 = 400 tasks (recall that the alpha-
bet contains 20 symbols). We run each task on one CPU and
measure its execution time. The results are shown in Fig. 8a,
which represents the workload frequency distribution for the
combination of Q and l p. For a point (x, y), x represents exe-
cution time, whereas y represents the number of tasks that
require time x to run. The total execution time for Q is given
by the area under the curve.

The coarse decomposition of the search space leads to an
irregular distribution with many “heavy” tasks. For instance,

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

T

as
ks

Time (sec)

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)

lp=2

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

15 30 60 120 240 480
Sp

ee
du

p
E

ff
ic

ie
nc

y

Cores

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)

lp=2

(b)

Fig. 8 For example query Q and l p = 2, the search space is decom-
posed to 400 large tasks. Load balancing is poor, and the speedup effi-
ciency drops when using more than 60 CPUs. a Workload frequency
distribution for 400 tasks. b Speedup efficiency as number of cores is
varied

there are about 70 tasks that run in less than 100 s, but there
are also around 130 tasks that need more than 300 s; some
extreme cases need more than 500 s. Even with dynamic
scheduling, balancing such a workload on a parallel system
is challenging. We executed Q with varying number of CPUs
and measured the speedup efficiency SE ; the results are
shown in Fig. 8b. Assuming the threshold for good speedup
efficiency is SEmin = 0.8, the figure shows that this partic-
ular decomposition does not allow Q to scale efficiently to
more than 60 CPUs. Note that, if more than 60 CPUs are
used, the total execution time for Q will decrease, but due to
load imbalance many CPUs will be underutilized, so com-
putational resources will be wasted. In our experiment, if
instead of 60 we use 480 CPUs (i.e., 8x increase), the total
execution time will drop from 30min to 10min (i.e., only
3x improvement). This is the practical meaning of low SE
values.

Our scheduling corresponds to an instance of the online
dynamic bin packing problem. When items are few and large
(i.e., coarse decomposition of search space), bins cannot be
filled optimally. Intuitively, more and smaller objects are

123

A scalable parallel system 881

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60

T

as
ks

Time (sec)

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)

lp=3

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

60 120 240 480 960 1920

Sp
ee

du
p

E
ff

ic
ie

nc
y

Cores

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)

lp=3

(b)

Fig. 9 For example query Q and l p = 3, the search space is decom-
posed to 8,000 tasks. Load balancing is near optimal, and the speedup
efficiency is high up to 500 CPUs. a Workload frequency distribution
for 8,000 tasks. b Speedup efficiency as number of cores is varied

needed. This corresponds to a longer prefix length, result-
ing in a finer decomposition. We run again the same exper-
iments for l p = 3, which generates 203 = 8, 000 tasks.
The workload frequency distribution is shown in Fig. 9a; it
resembles a leptokurtic and positively skewed nonsymmetric
distribution. While we do not know the processing time of
tasks beforehand, we expect their execution time to decrease
monotonically as they are further decomposed. Indeed, the
figure shows that the majority of tasks run in around 5 s,
whereas very few need from 40 to 60 s. Consequently, there
are enough small tasks to keep all CPUs busy while the few
larger ones are executed. Moreover, the probability of a large
task being executed last is low because there are only a few
of them; therefore, we expect good load balance. Figure 9b
shows the speedup efficiency for a varying number of CPUs.
Observe that the algorithm scales well (i.e., SE ≥ 0.8) up
to about 500 CPUs, which is an order of magnitude more,
compared to Fig. 8b.

It is tempting to generate an even finer search space
decomposition in order to scale to more CPUs. Figure 10a
shows the workload frequency distribution for l p = 4. The
graph resembles a power-law distribution. Out of the 160,000
generated tasks, very few take 3–5 s, whereas the vast major-
ity (i.e., around 130,000 tasks) are very small with execution

20K

40K

60K

80K

100K

120K

140K

 0 1 2 3 4 5 6

T

as
ks

Time (sec)

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)

lp=4

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64

Sp
ee

du
p

E
ff

ic
ie

nc
y

Cores

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)

lp=4

(b)

Fig. 10 For example query Q and l p = 4, the search space is decom-
posed to 160,000 tasks. Since most tasks are false-positive prefixes,
speedup efficiency is poor even at 2 CPUs. a Workload frequency dis-
tribution for 160K tasks. b Speedup efficiency as number of cores is
varied

time close to zero. Unfortunately, many of these tasks are
false-positives that generate useless work. Although the over-
head per false-positive task is small, because of their sheer
number, the cumulative overhead is high. Figure 10b shows
the speedup efficiency for a varying number of CPUs. SE
is always less than SEmin ; therefore, for this decomposition,
the system cannot scale efficiently not even on 2 CPUs.

6.3 ACME automatic tuning

We solve Problem 2 as follows: We partition the search space
at a specific prefix length l p and draw a random sample of
tasks to run, in order to estimate the speedup efficiency SE .
We repeat this process with different prefix lengths until we
find the one that allows scaling to the largest number of CPUs
with SE ≥ SEmin .

Algorithm 3 describes the process. In line 1, l p is initial-
ized to the minimum motif length lmin . We start with the
longest prefix length possible, that is, the minimum length
of valid motifs; then, we try shorter prefixes. This way we
arrive to the optimal l p faster, because longer prefixes pro-
duce smaller tasks that run faster. If l p is decremented to the
distance value d without meeting the stopping criterion (see

123

882 M. Sahli et al.

Input: Sequence S; query Q(|S|, σ, lmin, lmax , d); threshold
SEmin

Output: Prefix length l p; number of CPUs Cmax

l p ← lmin1
Cmax ← 12

while l p > d do3

// randomly draw x prefixes of length l p
sample← RandomPrefixes(x , l p)4

sample_times ← ExtractMotifs(sample)5

tC← EstSpdupEff(sample_times, SEmin)6
if tC < Cmax then7

break8

else9
l p ← l p − 110
Cmax ← tC11

l p ← l p + 112

Algorithm 3: ACME Automatic Tuning

line 7), l p is set to d + 1 and the algorithm terminates. This
follows from Observation 1 in Sect. 5.3. To reduce the over-
head of the automatic tuning process, sample prefixes can be
generated and evaluated in parallel (i.e., lines 4 and 5). In
practice, the main loop of the algorithm is executed only a
few times before finding a near-optimal decomposition.

Function EstSpdupEff in line 6 is the heart of the algo-
rithm. Given a decomposition, for a specific number C of
CPUs, it estimates the corresponding speedup efficiency. The
function iterates over a range of values for C and returns
the one that achieves the maximum SE for the given space
decomposition. The following paragraphs explain how to
estimate the serial (i.e., T1) and parallel (i.e., TC) execution
times, which are required by EstSpdupEff.

6.3.1 Estimating serial execution time

From the previous analysis, it follows that the workload fre-
quency distribution of a good space decomposition should be
similar to the one in Fig. 9a. It should contain a lot of fairly
small tasks, in order to achieve load balance, but should avoid
very small ones, since they tend to be false-positives. Conse-
quently, our optimization process is based on the following
heuristic:

Observation 6 A near-optimal partitioning will produce
tasks with a workload frequency distribution that resembles
a Gamma [23] distribution.

A Gamma distribution Γ is characterized by a shape
parameter α and a scale parameter β. Recall that line 4 of
Algorithm 3 generates a sample of tasks for prefix length
l p. According to our heuristic, we assume that the sample

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

PD
F

Time (min)

Estimated PDF
Samples’ Histogram

Fig. 11 Estimated probability density function (PDF) for the tasks
workload frequency and the histogram from the actual execution times
of 160 sample tasks

approximates Γ . Therefore, we can use the sample to calcu-
late approximations for the mean μΓ and standard deviation
σΓ of Γ . Then, we calculate α and β as follows4 [23]:

α = μ2
Γ

σ 2
Γ

, β = μΓ

α
(2)

The probability density function (PDF) of Γ is defined as:

Γ (x;α, β) = βαxα−1e−βx

(α − 1)! (3)

As an example, consider the same settings as in Fig. 9a,
decompose the space at l p = 3 and draw a sample of 160
tasks. Figure 11 depicts the PDF of the runtime of the sample
as solid bars, and the PDF of the estimated Γ distribution as
dotted line. Observe that the PDF of Γ resembles closely the
desired workload frequency distribution of Fig. 9a.

Let Λ(ti , t j) be the expected number of tasks (in the entire
space for a given l p) with runtime between ti and t j . Given
Γ , Λ is calculated as follows:

Λ(ti , t j) = |Σ |l p

∫ t j

ti
Γ (x;α, β) dx (4)

The serial execution time T1 is the summation of the exe-
cution times of all tasks. The lower bound of runtime for a
task is zero, but the upper bound is unknown. Let x be an
integer time unit. Then, T1 is defined as:

4 The family of Gamma distributions contains many different shapes.
To verify that our sample generates the desired leptokurtic, positively
skewed nonsymmetric distribution, we check: 4 > α > 1 and β < α.

123

A scalable parallel system 883

T1 =
∞
∑

x=0

2x + 1

2
Λ(x, x + 1) (5)

6.3.2 Estimating parallel execution time

We employ the queuing theory [15] to estimate the parallel
execution time TC . We model the motif extraction process as
a finite-source queue of |Σ |l p tasks served by C servers (i.e.,
CPUs). Without loss of generality, we assume homogeneous
servers. Since our population is finite, numerically simulating
the queue provides an accurate representation of the real sys-
tem [21]. ACME implements a discrete event simulator. We
start with all tasks in the queue as tasks are generated by sim-
ply enumerating prefixes. The workloads of the tasks follow
the workload frequency distribution of our sample prefixes.
Equation 4 is used to create bins of tasks. The servers ran-
domly consume tasks from different workload bins until all
bins are empty. The output of the simulator is our estimation
for the parallel execution time TC .

6.4 ACME elasticity

The elasticity model of ACME furnishes users with an accu-
rate estimation of the minimum amount of resources required
to process a query within specific constraints. User con-
straints may involve the maximum allowed execution time;
maximum amount of CPU hours, if the system is deployed
in a typical shared research computing infrastructure; or a
limit on the financial cost, if a commercial cloud computing
provider is used.

Algorithm 4 describes the elasticity model. It takes the
execution time of each of the tasks in the random sample (see
Sect. 6.3) and the user constraints as input, and outputs the
number of CPUs to use, together with the estimated time and
speedup efficiency. In line 5, a queue is setup by randomly
taking tasks with workloads according to our probability den-
sity function. The execution of the query is simulated using
a certain number of CPUs. This simulation is done in a loop
where the number of CPUs is varied until the user constraints
are met.

Given the expected performance variability on public
clouds [27], users should be able to reevaluate the situation
online and adapt accordingly. Our serial time estimation may
be reevaluated at runtime to guide user decisions and meet
their constraints. A slight modification of Eq. 4 is used to
account only for the tasks not executed yet. We substitute
|Σ |l p with |Σ |l p − k, where k is the number of already com-
pleted tasks.

The output of our model can be used in many ways. For
example, if the pricing scheme of a cloud computing provider
is given, our model can predict accurately the expected finan-
cial cost. We present such a case study in Sect. 8.1.2.

Input: Sample times sample_t , user_constraints
Output: Suggested number of cores Cp , estimated parallel time

TC
// estimate PDF from sample execution times
α← (Mean(sample_t)/StDev(sample_t))21
β ← Mean(sample_t)/α2

// predict serial time left

T1 ←
∞
∑

t=0
(2t+1

2 Λ(t, t + 1))
3

// predict parallel time and utilization
while user_constraints �= TRUE do4

SetupQueue(user_constraints, Cp)5

(TC, Cp)← SimulateQueue(sample_t)6

Algorithm 4: ACME Elasticity Model

7 Cache-optimized motif extraction (CAST)

ACME decomposes the search space into sub-tries of arbi-
trary sizes. Each sub-trie is maintained independently using
our cache-optimized mechanism, called CAST.5

7.1 Spatial and temporal memory locality

Existing motif extraction methods realize the search space
trie as a set of nodes, where each node has a one charac-
ter label, pointers to its parent and children, and its occur-
rences set. These nodes are dynamically allocated and deal-
located. The maximum number of nodes to be created and
then deleted from main memory is

∑lmax
i=1 |Σ |i . For example,

when lmax = 15 and |Σ | = 4, the maximum number of
nodes is 1,431,655,764. These nodes are scattered in main
memory and visited back and forth to traverse all motif can-
didates. Consequently, existing methods suffer dramatically
from cache misses, plus the overhead of memory allocation
and deallocation.

A branch of trie nodes represents a motif candidate as a
sequence of symbols. These symbols are conceptually adja-
cent with preserved order, allowing for spatial locality. More-
over, maintaining occurrences set is a pipelined process; for
instance, the occurrences set of AA is used to build the occur-
rences set of AAA. This leads to temporal locality. Existing
approaches overlooked these important properties.

We propose CAST, a representation of the search space trie
together with access methods, that is specifically designed to
be cache efficient by exhibiting spatial and temporal local-
ity. For spatial locality, CAST utilizes an array of symbols
to recover all branches sharing the same prefix. The size of
this array is proportional to the length of the longest motif
to be extracted. For instance, a motif of 1K symbols requires
roughly a 9 KB array. In practice, motifs are shorter. We

5 CAST stands for cache aware search space traversal.

123

884 M. Sahli et al.

experimented with DNA, protein and English sequences of
gigabyte sizes, where the longest frequent motif lengths are
28, 95 and 42 symbols, respectively. Moreover, the occur-
rences set is also realized as an array. A cache of a modern
CPU can easily fit a sub-trie branch and, in most cases, its
occurrences array. For temporal locality, once we construct
the occurrences array L(vi) of branch node vi , we revisit
each occurrence to generate L(vi+1). We take advantage of
the fact that the total frequency of L(vi+1) is bounded by that
of L(vi). Therefore, with high probability, all data necessary
for the traversal and validation are already in the cache.

7.2 CAST algorithm

CAST extracts valid motifs as follows: (i) initialize the sub-
trie prefix; then, (ii) extend the prefix as long as it leads to
valid motif candidates; otherwise (iii) prune the extension. In
the rest of this section, we consider sequence S from Fig. 3
and use an example query Q with σ = 12, lmin = lmax = 5
and d = 2.

Algorithm 5 shows the details. Let branch be the sub-
trie branch array. An element branch[i] contains a symbol
c, an integer F , and a pointer, as shown in Fig. 12. Each
sub-trie has a prefix p that is extended to recover all motif
candidates sharing p. branch[i] represents motif candidate
mi = pc1. . .ci , where ci is a symbol from level i of the
sub-trie (see Fig. 2). Fi is the total frequency of mi , and the
pointer refers to L(mi). Each occurrence in L(mi) is a pair
〈T, D〉, where T is a pointer to a suffix tree node whose
path label matches motif candidate mi with D mismatches.
branch[0] represents the fixed-length prefix of the sub-trie.
F0 is a summation of the frequency annotation from each
suffix tree node in L(p).

7.2.1 Prefix initialization

Algorithm 5 starts by creating the occurrences array of the
given fixed-length prefix before recovering motif candidates.
CAST commences the occurrences array maintenance for a
prefix by fetching all suffix tree nodes at depth one. The
maximum size of the occurrences array at this step is |Σ |.
The distance is maintained for the first symbol of the prefix.
Then, the nodes, whose distances are less than or equal to
d, are navigated to incrementally maintain the entire prefix.
The number of phases to maintain the occurrences array of
prefix p is at most |p|.

For example, the sub-trie with prefix TG is initialized by
CAST in two phases using the suffix tree in Fig. 3. Fig-
ure 12a shows the final set L(TG) of occurrences in S. The
first element in L(TG) is 〈1, 0〉 because the path label of suf-
fix tree node 1 is TG with no mismatches from our prefix.
The second element in L(TG) is 〈2.1, 1〉 because the first

Input: lmin , lmax , prefix p
Output: Valid motifs with prefix p

Let branch be an array of size lmax − |p| + 11
branch[0].L ← getOccurrences(p)2
branch[0].F ← getTotalFreq(branch[0].L)3
i ← 14
next ← DepthFirstTraverse(i)5

while next �= END do6
branch[i].C ← next7
branch[i].F ← branch[i − 1].F8
foreach occur in branch[i − 1].L do9

if occur is a f ull su f f i x tree path label then10
// check child nodes in suffix tree
foreach child of occur.T do11

if f irst symbol in child label �= next then12
child.D = occur.D + 113
if child.D > d then14

Discard(child)15
if branch[i].F < σ then16

Prune(branch[i])17

else18
add child to branch[i].L19

else20
// extend within label in suffix tree
if next symbol in occur.T label �= next then21

increment occur.D22
if occur.D > d then23

Discard(occur)24
if branch[i].F < f then25

Prune(branch[i])26

else27
add occur to branch[i].L28

if isValid(branch[i]) then Output(branch[i])29
i ++30
next ← DepthFirstTraverse(i)31

Algorithm 5: CAST Motifs Extraction

two symbols from the path label of suffix tree node 2.1 are
GG with one mismatch from our prefix. The total frequency
of TG at branch[0] is the sum of frequencies of the suffix
tree nodes in L(TG): 7+ 5+ 5+ 2+ 1+ 1+ 1 = 22.

7.2.2 Extension, validation, and pruning

Since TG is frequent enough, it is extended by traversing its
search space sub-trie. The depth-first traversal (DFT) of the
sub-trie starts at line 5 in Algorithm 5 to extend branch[0];
it considers all symbols of Σ at each level of the DFT. At
level i , DepthFirstTraverse returns ci to extend branch[i − 1].
Figure 12b demonstrates the extension of branch[0] with
symbols T then G.

The maintenance of the occurrences set is a pipelined func-
tion, where L(branch[i + 1]) is constructed from its parent

123

A scalable parallel system 885

(a) (b) (c) (d)

Fig. 12 Snapshot of CAST processing for Q′(|S| = 23, σ =
12, lmin = 5, lmax = 5, d=2) over the sequence of Fig. 3. Prefix TG is
extended one symbol at a time to maintainTGTGC andTGTGG branches.
A branch is traversed from ancestor to descendant by moving from left

to right. CAST array (branch) and the occurrences array of the deep-
est descendant are easily cached, since both fit into small contiguous
memory blocks

L(branch[i]). This process is done in the loop starting at
line 9. For example, L(TGT) is created by navigating each
element in L(TG). The first element of L(TG) adds suffix
tree nodes 1.1, 1.2, and 1.3 to L(TGT) with distance
1 since their labels do not start with T. The second element
of L(TG) is added to L(TGT) since its label was not fully
consumed. In node 2.2, the next symbol of its label intro-
duces the third mismatch. Thus, the third element of L(TG)

is discarded. The rest of L(TG) is processed in the same
way. The total frequency at branch[1] drops to 14. Simi-
larly, L(TGTG), L(TGTGC), and L(TGTGG) are created in
Fig. 12b–d, respectively.

A node at branch[i] can be skipped by moving back to its
parent at branch[i−1], which is physically adjacent. There-
fore, our pruning process has good spatial locality, where
backtrack means move to the left. For example in Fig. 12c, the
total frequency of TGTGC drops below the frequency thresh-
old σ = 10 after discarding node 1.1 of frequency 4 from
L(TGTG), i.e., 12−4 < σ . Since TGTGC has frequency less
than σ , we do not need to check the rest of the occurrences
and the branch is pruned (see line 16 in Algorithm 5).

After pruning TGTGC, CAST backtracks to branch[2],
which will now be extended using G. All occurrences from
branch[2] are also valid for TGTGG at branch[3] with no
change in total frequency. The IF statement in line 29 returns
true since the branch represents a valid motif of length 5 and
function Output is called. The next call to DepthFirstTraverse

finds that i > lmax so it decrements i until the level where
an extension is possible or the sub-trie is exhausted.

CAST supports exact-length motifs, maximal motifs, and
supermaximal motifs. Function IsValid in line 29 determines

whether a branch represents a valid motif or not as discussed
in Sect. 2. For exact-length motifs, only branches of that
length are valid. For maximal motifs, IsValid returns false if
(i) branch[i] could be extended without changing its occur-
rences list (i.e., not right maximal), or (ii) none of its occur-
rences is a left-diverse node (i.e., not left maximal). For super-
maximal motifs, IsValid passes the right-supermaximal motifs
to a combiner that implements Algorithm 1 as discussed in
Sect. 4.

8 Evaluation

We implemented ACME 6 in C++. We adopted two different
models: (i) ACME-MPI uses the message passing interface
(MPI) to run on shared-nothing systems, such as clusters and
supercomputers, and (ii) ACME-THR utilizes threading on
multi-core systems, where the sequence and its suffix tree are
shared among all threads.

We conducted comprehensive experiments to analyze the
cloud-oriented features of ACME and to compare with exist-
ing methods on different motif types, scalability, and compu-
tational efficiency. The query workload is not only affected
by sequence size but also by alphabet size, motif length, dis-
tance, and frequency. In our experiments, we used: (i) data-
intensive queries, where the sequence size is in the order of
few gigabytes, (ii) processing-intensive queries, where the

6 ACME code and the used datasets are available online at: http://cloud.
kaust.edu.sa/Pages/acme_software.aspx.

123

http://cloud.kaust.edu.sa/Pages/acme_software.aspx
http://cloud.kaust.edu.sa/Pages/acme_software.aspx

886 M. Sahli et al.

Table 3 The specifications of the various systems used in the experiments discussed in the evaluation of ACME

Architecture Cores RAM L1 cache L2 cache L3 cache
(KB) (MB)

1 32-bit Linux machine 2 cores @ 2.16 GHz 2 GB shared 64 1 MB

2 64-bit Linux machine 12 cores @ 2.67 GHz 192 GB shared 64 256 KB 12

3 64-bit Linux SMP 32 cores @ 2.27 GHz 624 GB shared 64 256 KB 24

4 Amazon EC2 64-bit Linux cluster 40 on-demand large
instances, each having 2
cores

7.5 GB each 300 GB total 64 6 MB

5 IBM Blue Gene/P supercomputer 16,384 quad-core PowerPC
processors @ 850 MHz

4 GB each 64 TB total 64 2 KB 8

6 64-bit HPC Linux cluster 480 cores @ 2.1 GHz 6 GB each 3 TB total 128 512 KB 5

thresholds are loose and lead to huge search space, and (iii)
a combination of both cases.

We use real datasets of different alphabets: (i) DNA7 of
the entire human genome (2.6 GB, 4 symbols alphabet); (ii)
Protein8 sequence (6 GB, 20 symbols); and (iii) English9 text
from an archive of Wikipedia (1 GB, 26 symbols). In some
experiments, especially in cases where our competitors are
too slow, we use only a prefix of these datasets. We deployed
ACME on various systems with different architectures; the
details appear in Table 3. In each experiment, we refer to
the used system by its serial number, e.g., System#5 for the
supercomputer.

8.1 Analyzing ACME cloud-oriented features

In this section, we evaluate the cloud-oriented features of
ACME, namely automatic tuning, elasticity, parallel scala-
bility, and cache efficiency.

8.1.1 Automatic tuning: accuracy and cost

First, we evaluate the accuracy and overhead of our automatic
tuning process. We aim at finding the best sample size that
achieves high accuracy with an acceptable overhead. The
experiments in this section were run on System#5 (refer to
Table 3).

First, we search exhaustively for the best prefix length l p

for our query on a DNA sequence. We run the entire query
for varying prefix length and for varying number of cores.
The speedup efficiency SE for all combinations is shown
in Table 4. The best SE is achieved for l p = 9. Shorter
prefixes generate too few tasks that cannot achieve load bal-
ance, especially when scaling to thousands of cores, whereas
longer prefixes result in too many false-positives.

7 http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz.
8 http://www.uniprot.org/uniprot/?query=&format=*.
9 http://en.wikipedia.org/wiki/Wikipedia:Database_download.

Table 4 Speedup efficiency with different prefix lengths l p on Sys-
tem#5

Q(|S| = 8 MB, σ = 10 K, lmin = 12, lmax = ∞, d = 3)

Cores Speedup efficiency SE

lp = 7 l p = 8 l p = 9 l p = 10

512 0.94 0.97 0.98 0.81

1,024 0.87 0.97 0.97 0.83

2,048 0.83 0.92 0.97 0.83

4,096 0.46 0.76 0.92 0.76

8,192 0.25 0.46 0.76 0.46

Query over DNA sequence with serial execution of 5.2 h. For each com-
bination the complete Q was executed

Next, we use ACME’s automatic tuning on the same
sequence and query. We vary the sample size used in Algo-
rithm 3 to study its effect on accuracy. Table 5 shows the
results. The suggested value for l p converges quickly. Our
algorithm needs roughly 160 sample tasks to stabilize to the
optimal value l p = 9. Note that the overhead of running
this sample is less than 10 s, compared to 5.4 h for gener-
ating exhaustively the values for the previous experiment
(i.e., Table 4). Observe that (i) the overhead does not depend
directly on the sample size, but on the actual workload of
tasks. A small sample can contain prefixes of very high work-
load compared to those in a larger sample, and vice versa.
Moreover, the number of iterations until the tuning algorithm
converges depends on the selected tasks, not on the sample
size. (ii) We run the tuning process on one core; however, the
entire process can be efficiently parallelized.

8.1.2 Elasticity model: deployment on Amazon EC2

ACME’s elasticity model estimates the serial and parallel
execution times, and the speedup efficiency in order to decide
the minimum amount of resources that meet the user’s con-
straints. Below, we discuss the accuracy and cost of the esti-

123

http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://www.uniprot.org/uniprot/?query=&format=*
http://en.wikipedia.org/wiki/Wikipedia:Database_download

A scalable parallel system 887

Table 5 Sensitivity analysis of the automatic tuning sample size

Q(|S| = 8 MB, σ = 10 K, lmin = 12, lmax = ∞, d = 3)

Sample size Tuning overhead (s) Suggested l p

10 9.0 7

20 11.0 7

40 6.1 8

80 3.7 9

160 6.1 9

320 11.4 9

The best prefix length for this query is 9, as computed exhaustively in
Table 4. Having between 100 and 200 samples finds the accurate prefix
length l p . The overhead is only a few seconds as opposed to 5.4 h to
generate Table 4

Table 6 Sensitivity analysis of the sample size in estimating serial
execution time

Q(|S| = 16 MB, σ = 60 K, lmin = 8, lmax = ∞, d = 3)

Sample size Overhead (s) Estimated time (s) Error (%)

10 5.1 2,792 10.58

20 4.1 2,028 19.67

40 4.0 2,867 13.57

80 7.8 2,233 11.53

160 6.7 2,494 1.22

320 10.0 2,487 1.49

mation, and demonstrate the applicability of our model on
Amazon EC2. Our experiments were run on System#4 (refer
to Table 3).

Table 6 shows the estimated serial execution time, the
error compared to the actual serial execution time, and the
estimation overhead. Our estimation is very accurate (i.e.,
less than 1.5 % error), using very small samples, in the order
of 160 to 320 tasks. The overhead of the estimation process
is also very small; it did not exceed 10 s in the worst case.
Based on Table 6, we set the default sample size to 200 tasks
for the rest of the paper. We also evaluated the accuracy of the
parallel execution time estimation, by varying the number of
cores. Figure 13 shows that our estimation is very close to
the actual parallel run time.

The next experiment demonstrates a scenario in which
an Amazon EC2 user needs to know how many instances
to rent in order to query the DNA dataset. Assume the user
needs the query to be executed in less than 3 h without spend-
ing more than $20. Each Amazon EC2 instance costs $0.24
per hour.10 We employ our elasticity model to estimate the
expected runtime and financial cost for varying number of

10 http://aws.amazon.com/ec2/pricing/.

 10

 100

 1000

 10000

1 10 20 40 80

T
im

e
(s

ec
)

Number of Cores

Q(|S|=16MB, σ=60K, lmin=8, lmax=∞, d=3)

Estimated time
Actual time

Fig. 13 Accuracy of the estimation of the parallel execution time, used
for automatic tuning and elasticity

Table 7 Deployment on Amazon EC2, using the DNA dataset

Q(|S| = 32 MB, σ = 60 K, lmin = 9, lmax = ∞, d = 4)

Number of Amazon EC2 instances

1 10 20 30 40

Cores 2 20 40 60 80

Cost/hour $0.24 $2.40 $4.80 $7.20 $9.60

Est. time 2.5 Days 5.9 h 3.1 h 2.1 h 1.5 h

Est. cost $14.40 $14.40 $19.20 $21.60 $19.20

Act. time 2.9 Days 5.1 h 4.3 h 2.3 h 1.6 h

Act. cost $16.80 $14.40 $24.00 $21.60 $19.20

Because of user constraints, runtime and financial cost must not exceed
3 h and $20, respectively. Both constraints are satisfied if 40 instances
are rented

EC2 instances. The results are summarized in Table 7. For
example, if 10 instances are rented, the financial cost con-
straint is satisfied (i.e., 14.40 < 20), but the expected runtime
is 5.9 h, much longer than the user’s request. The runtime con-
straint is satisfied for 30 instances; however, the financial cost
constraint is not. Interestingly, if more instances are rented
(i.e., 40), then both constraints are satisfied. This happens
because of the coarse-grained pricing schemes imposed by
most cloud service providers; Amazon, for instance, charges
on hourly basis. Because of the pricing scheme, the run-
time estimation needs to be accurate, else the user may face
higher costs. In our example, if the user rents 50 instances,
our model estimates around 1 h execution time, costing $12.
However, if the actual execution takes a few seconds more
than an hour, the cost will double to $24. Because of shared
cloud resources, such performance variability is expected.
Nevertheless, our experiments demonstrate that the estima-
tions from our model are very close to the actual values
in most cases; the results are shown at the lower part of
Table 7.

123

http://aws.amazon.com/ec2/pricing/

888 M. Sahli et al.

Table 8 Startup time is the time to transfer S to each worker, plus the
time to construct the suffix tree

Q(|S| = 32 MB, σ = 60 K, lmin = 9, lmax = ∞, d = 4)

Cores Startup time (s) Extraction time

5 49 2 days

50 50 4 h

350 63 50 min

It increases only slightly with the number of workers and is orders of
magnitude less than the extraction time

8.1.3 Startup cost and elasticity overhead

In this section, we show the startup cost of ACME and the
overhead of elastically changing the number of workers dur-
ing execution. We conducted the experiments on System#6
(refer to Table 3), using the DNA dataset. We run the same
query using 5, 50, and 350 cores. The results are shown in
Table 8. We break the total execution time into: (i) Startup
time. It is the sum of time to transfer the input sequence S
to all new workers and construct the corresponding suffix
tree, independently in each worker. Startup time increases
only slightly when more cores are used: when the number of
cores increases by 70x, startup time increases only by 1.3x.
Since each worker builds independently and in parallel its
local suffix tree, the increase is due to network congestion
(i.e., S is sent by the master to all workers). Note that the most
significant portion of the startup overhead is suffix tree con-
struction. Its complexity is linear to S and does not depend
on the query. (ii) Extraction time. It is the time to run the
actual motif extraction process and drops dramatically with
more cores, as expected. Observe that, in all cases, the startup
overhead is orders of magnitude less than the extraction
time.

ACME can scale elastically in or out by removing or
adding workers, respectively. Scaling in does not incur
any overhead, because tasks are scheduled to workers
independently in a pull fashion. During scaling out, on
the other hand, new workers incur the startup overhead.
As discussed, the startup overhead is not significant (i.e.,
orders of magnitude smaller than the useful work). More-
over, the startup overhead occurs independently on each
new worker; existing workers continue processing without
interference.

8.1.4 Parallel scalability

This section investigates ACME’s parallel scalability. We test
the so-called strong scalability, where the number of cores is
increased while the problem size is fixed. We first compare
ACME against PSmile, the only parallel competitor. PSmile
uses grid-specific libraries to parallelize a previous sequen-

Table 9 Scalability of PSmile on System#6 using the DNA dataset

Q(|S| = 32 MB, σ = 10 K, lmin = 10, lmax = 15, d = 3)

Cores Time (s) Speedup efficiency

PSmile ACME PSmile ACME

5 19,972 18,883 1.00 1.00

10 9,894 8,476 0.90 0.99

20 4,869 3,978 0.86 0.99

40 2,786 1,969 0.74 0.98

80 1,787 989 0.57 0.97

160 1,130 580 0.44 0.82

The speedup efficiency of PSmile is hindered by load imbalance due to
improper search space partitioning and static scheduling (SE < 0.8 is
considered low)

tial motif extraction algorithm. Calculating the speedup effi-
ciency from the experiments reported in the PSmile paper,
speedup efficiency SE drops to 0.72 when using 4 nodes
only; recall that in practice, SE < 0.8 is considered low.
We suspected that the bad performance was partially due
to inefficient implementation. For fairness, we implemented
the search space partitioning and task scheduling scheme of
PSmile within ACME, utilizing our cache-efficient trie tra-
versal algorithms.

Table 9 shows the results, using our optimized imple-
mentation of PSmile. The experiment was run on System#6
(refer to Table 3). Due to resource management restric-
tions, the minimum number of cores used in this experiment
was 5; therefore, speedup efficiency is calculated relative to
a 5-core system. PSmile does not scale efficiently not even on
40 cores, due to problematic space partitioning and schedul-
ing, which creates load imbalance. In contrast, for this par-
ticular query, ACME scales easily to more than 160 cores.

The next experiment investigates ACME’s scalability to
the extreme, by utilizing up to 16,384 cores on a supercom-
puter. We use the Protein dataset, which results to a much
larger search space than DNA because of the larger alpha-
bet (i.e., 20 symbols). With larger alphabets, ACME auto-
matic tuning model will suggest a small prefix length; in this
case, l p = 5. The experiment was run on System#5. Due to
resource management restrictions, the minimum number of
cores used in this experiment was 256 cores; hence, speedup
efficiency is calculated relatively to a 256-core system. The
results are shown in Table 10 and demonstrate the excellent
scalability of ACME to thousands of cores. On 256 cores,
the query takes almost 20 h to execute, whereas with 16,384
cores it finishes in only 18.6min, achieving almost perfect
(i.e., 0.98) speedup efficiency. It is worth mentioning that
the same query on a high-end 12-core workstation (i.e., Sys-
tem#2) takes more than 7 days. Recall that each core of the
workstation is much faster (i.e., 2.67GHz) than a supercom-
puter core (i.e., 850MHz).

123

A scalable parallel system 889

Table 10 Scalability of ACME on a supercomputer for the Protein
dataset

Q(|S| = 32 MB, σ = 30 K, lmin = 12, lmax = ∞, d = 3)

Cores Time (h) Speedup efficiency

256 19.83 1.00

1,024 4.97 0.99

2,048 2.51 0.98

4,096 1.29 0.96

8,192 0.68 0.91

16,384 0.31 0.98

ACME scales to tens of thousands of cores with high speedup efficiency

Table 11 Supermaximal Motifs from the complete DNA for the human
genome (2.6 GB) categorized by length

Q(|S| = 2.6 GB, σ = 500 K, lmin = 15, lmax=var, d = 3)

Supermaximal (lmax = ∞) Exact-length (lmax = lmin)

Len Count Len Count Len Count Len Count

15 359,293 20 30,939 25 443 15 446,344

16 82,813 21 33,702 26 143

17 22,314 22 12,793 27 37

18 7,579 23 5,289 28 2

19 2,288 24 2,435

Total 560,070 Total 446,344

The total number of supermaximal motifs is more than total number of
exact-length motifs

8.2 ACME comprehensive motif extraction support

In addition to supermaximal motifs, ACME extracts maximal
and exact-length ones. The following paragraphs evaluate
ACME’s scalability in terms of input size and query com-
plexity and compare ACME against state-of-the-art systems
for maximal and exact-length motifs.

8.2.1 Gigabyte-long sequences and varying alphabets

The experiments discussed in this section were run on Sys-
tem#2 and System#3 (refer to Table 3). Table 11 shows the
count of all supermaximal motifs (i.e., no bound for lmax),
grouped by length, that appear at least σ = 500K times in the
entire human DNA (i.e., 2.6 GB). For reference, the count of
all maximal motifs with length 15 is also shown. The longest
supermaximal motif is 28 symbols long. This means that the
CAST array size did not exceed 252 bytes in a 32-bit system
(28 elements of 9 bytes each). With current CPU cache sizes,
not only the CAST array will fit in the cache but most proba-
bly the occurrences array too. Consequently, ACME handles
the extra workload of extracting maximal and supermaximal
motifs efficiently.

 0

 20

 40

 60

 80

 100

0.5 1 1.5

M

ot
if

s
(T

ho
us

an
ds

)

Sequence size (GB)

Q(|S|=var, σ=500K, lmin=15, lmax=∞, d=3)

Exact-length
Supermaximal

(a)

 0

 60

 120

 180

 240

 300

0.5 1 1.5

T
im

e
(M

in
ut

es
)

Sequence size (GB)

Q(|S|=var, σ=500K, lmin=15, lmax=∞, d=3)

Exact-length
Supermaximal

(b)

Fig. 14 Supermaximal versus Exact-length motifs extraction using
ACME. a Number of motifs. b Time performance

Table 12 Analysis of three sequences of different alphabets, each of
size 1 GB

Query Motifs Longest Time (m)

DNA σ=500 K, l=12−∞, d=2 5,937 20 0.6

Protein σ=30 K, l=12−∞, d=1 96,806 95 2.1

English σ=10 K, l=12−∞, d=1 315,732 42 3.5

Observe that, in the entire human genome, there are around
20 % more supermaximal motifs of length 15 and more, com-
pared to the number of motifs with exact length 15. Figure 14a
shows the corresponding counts by varying the size of the
input sequence (i.e., using prefixes of the entire DNA). The
number of supermaximal motifs is in all cases significantly
more than the exact-length ones. Figure 14b compares the
time to extract exact-length versus all supermaximal motifs.
The difference is negligible (i.e., around 4 %), confirming the
efficiency of our supermaximal extraction algorithm.

ACME supports different alphabet sizes. Table 12 shows
the results of extracting supermaximal motifs from 1 GB
sequences of different alphabets. We also extracted maximal
and supermaximal motifs from 1.5 GB of the DNA sequence.

123

890 M. Sahli et al.

Table 13 The overhead of extracting supermaximal motifs over maxi-
mal motifs is not critical due to ACME’s pipelined strategy for filtering
motifs that are subsequences of others

Q(|S| = 1.5 GB, σ = 500 K, lmin = 15, lmax = ∞ d = 3)

Time Motifs

Maximal motifs 303.7 min 144,952

Supermaximal 313.7 min 87,680

Difference 10 min 57,272

Percentage 3.3 39.5

Table 13 shows that ACME’s pipelined strategy for filtering
motifs that are subsequences of others introduces an over-
head of 3.3 % over the maximal motifs extraction time. In
this process, about 40 % of the maximal motifs are discarded
because they are subsequences of other ones.

8.2.2 Comparison against state-of-the-art

We compared ACME against FLAME, MADMX, and
VARUN. Since the source code for FLAME was not
available, we implemented it using C++. MADMX11 and
VARUN12 are available from their authors’ Web sites. These
systems do not support parallel execution and are restricted
to particular motif types. The following experiments were
executed on System#2. Since our competitors run serially,
for fairness ACME uses only one core. The reported time
includes the suffix tree construction and motif extraction
time; the former is negligible compared to the extraction time.
Note that we use small datasets (i.e., up to 8 MB from DNA),
because our competitors cannot handle larger inputs.

ACME is evaluated against MADMX and VARUN when
extracting maximal motifs. Different similarity measures are
utilized by ACME, MADMX, and VARUN. Therefore, this
experiment does not allow mismatches (i.e., d = 0) in order
to produce the same results. Since the workload increases
proportionally to the distance threshold, this experiment is
relatively of light workload. Figure 15 shows that ACME
is at least one order of magnitude faster than VARUN and
two orders of magnitude faster than MADMX. Surprisingly,
VARUN breaks while handling sequences longer than 1 MB
for this query, despite the fact that the machine has plenty of
RAM (i.e., 192 GB). We were not able to test the scalability
of VARUN and MADMX in terms of alphabet size because
they support DNA sequences only.

FLAME and ACME produce identical exact-length motifs.
The serial execution of ACME significantly outperforms
FLAME with increasing workload, as illustrated in Fig. 16.

11 http://www.dei.unipd.it/wdyn/?IDsezione=6376.
12 http://researcher.ibm.com/files/us-parida/varun.zip.

 0.1

 1

 10

 100

 1000

 10000

0.25 0.5 1 2 4

T
im

e
(s

ec
)

Input sequence size (MB)

Q(|S|=var, σ=1K, lmin=1, lmax=∞, d=0, lp=1)

MADMX
VARUN
ACME

Fig. 15 Serial execution of ACME extracting maximal motifs using
one core versus MADMX and VARUN

We vary the workload by increasing motif length (Fig. 16a),
sequence size (Fig. 16b), frequency threshold (Fig. 16c), and
alphabet size (Fig. 16d). The impressive performance of our
system is a result of ACME’s cache efficiency. Note that, if
we were to allow ACME to utilize all cores, then it would be
one more order of magnitude faster. For example, we tested
the query of Fig. 16a when motif length is 12: FLAME
needs 4 h, whereas parallel ACME finishes in 7 min. The
alphabet size experiment was run using synthetic datasets,
generated with random distribution to guarantee compara-
tive workloads between sequences of different alphabets.

8.2.3 Memory usage

The memory usage of ACME grows linearly with respect
to the sequence size. This is because the main factor is the
suffix tree index; its implementation is not optimized since
it is not a contribution of ACME. Figure 17a shows that
the memory footprint of VARUN is three times higher than
ACMEs. MADMX has a low and constant memory footprint
for sequences over 0.5 MB but at the expense of 2 orders
of magnitude higher runtime (see Fig. 15). Fig. 17b shows
that FLAME and ACME have the same memory footprint
because they share the same suffix tree implementation. Yet,
ACME performs better than FLAME because of our cache-
efficient approach, CAST (see Fig. 16b).

8.3 Cache efficiency

Existing motif extraction methods incur a lot of cache misses
while traversing the search space. ACME uses our CAST
approach to represent the search space in contiguous mem-
ory blocks. The goal of this experiment was to demonstrate
the cache efficiency of CAST. We implemented the most
common traversing mechanism utilized in the recent motif
extraction methods, such as FLAME and MADMX, as dis-
cussed in Sect. 2. We refer to this mechanism as NoCAST.

123

http://www.dei.unipd.it/wdyn/?IDsezione=6376
http://researcher.ibm.com/files/us-parida/varun.zip

A scalable parallel system 891

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

9 10 11 12

T
im

e
(H

r)

Exact motif length

Q(|S|=8MB, σ=10K, lmin=lmax=var, d=3, lp=1)

FLAME
ACME

(a)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 2 4 8

T
im

e
(H

r)

Input sequence size (MB)

Q(|S|=var, σ=10K, lmin=lmax=13, d=3, lp=1)

FLAME
ACME

(b)

 0

 0.5

 1

 1.5

 2

 2.5

20000 15000 10000 5000

T
im

e
(H

r)

Frequency threshold

Q(|S|=4MB, σ=var, lmin=lmax=12, d=3, lp=1)

FLAME
ACME

(c)

 0
 5

 10
 15
 20
 25
 30
 35
 40

20 40 60 80 100

T
im

e
(M

in
)

Alphabet size

Q(|S|=5MB, σ=10K, lmin=lmax=5, d=1, lp=1)

FLAME
ACME

(d)

Fig. 16 Serial execution of ACME extracting exact-length motifs
using one core versus FLAME. ACME is superior as the workload
is increased using different factors. a Variable motif length. b Variable
sequence size. c Variable frequency. d Variable alphabet size

 0

 100

 200

 300

 400

 500

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
em

or
y

us
ag

e
(M

B
)

Input sequence size (MB)

Q(|S|=var, σ=1K, lmin=1, lmax=∞, d=0, lp=1)

MADMX
VARUN
ACME

(a)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1 2 3 4 5 6 7 8
M

em
or

y
us

ag
e

(M
B

)

Input sequence size (MB)

Q(|S|=var, σ=10K, lmin=lmax=13, d=3, lp=1)

FLAME
ACME

(b)

Fig. 17 Memory usage of ACME compared to VARUN and MADMX,
for the DNA dataset and the queries from Figs. 15 and 16b. a ACME
versus MADMX and VARUN. b ACME versus FLAME

We used the perf Linux profiling tool to measure the
L1 and L2 cache misses. This test was done on System#1
(refer to Table 3). CAST significantly outperforms NoCAST
in terms of cache misses and execution time, especially
when the motif length, and consequently the workload, is
increased, as shown in Fig. 18. The difference between
CAST and NoCAST shows earlier in L1 cache. However,
the difference in L2 cache misses starts to show as the motif
length is increased and has the same pattern. The correlation
between cache efficiency (Fig. 18a, b) and serial execution
time (Fig. 18c) is clear.

9 Conclusion

In this paper, we introduced ACME, a cloud-oriented combi-
natorial method for extracting supermaximal motifs from a
single long sequence, which is required in a variety of appli-
cations, including bioinformatics, web log analysis, time
series, and others. In addition, ACME supports exact-length
and maximal motifs. ACME arranges the search space in
contiguous blocks that take advantage of the cache hierarchy
in modern architectures. Moreover, ACME supports large-

123

892 M. Sahli et al.

 0

 4

 8

 12

 16

 20

9 10 11 12

C
ac

he
 m

is
se

s
(B

ill
io

ns
)

Motif length

Q(|S|=4MB, σ=10K, lmin=lmax=var, d=3, lp=1)

CAST
No CAST

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

9 10 11 12

C
ac

he
 m

is
se

s
(B

ill
io

ns
)

Motif length

Q(|S|=4MB, σ=10K, lmin=lmax=var, d=3, lp=1)

CAST
No CAST

(b)

 0

 50

 100

 150

 200

 250

9 10 11 12

T
im

e
(M

in
)

Motif length

Q(|S|=4MB, σ=10K, lmin=lmax=var, d=3, lp=1)

CAST
No CAST

(c)

Fig. 18 Correlation between caches misses and motif extraction time;
DNA dataset. a L1 cache misses. b L2 cache misses. c Time performance

scale parallelism and introduces an automatic tuning mech-
anism that estimates the expected execution time for various
scenarios and decides a good decomposition of the search
space that leads to near-optimal resource utilization. Auto-
matic tuning is particularly useful for cloud environments,
since it suggests the minimum amount of resources required
(i.e., minimizes financial cost), while meeting a user-defined
execution time constraint. In our experiments, we demon-
strated that ACME handles the entire DNA sequence for the
human genome on a single high-end multi-core machine; this

is 3 orders of magnitude longer compared to the state of the
art. We also showed that ACME can be deployed in a variety
of large-scale parallel architectures, including Amazon EC2
and a supercomputer with 16,384 CPUs.

This work is part of a research project for developing a
generic framework that supports automatic tuning and elas-
ticity for parallel combinatorial search algorithms. Our future
work also includes the development of a disk-based version
of ACME to support longer sequences in systems with lim-
ited memory.

Appendix 1: Proof for Algorithm 1

The set of supermaximal motifs from Algorithm 1 is correct
and complete. Let SpellTrieFromLeaves be a function that takes
as input a trie and returns the paths from the root to each leaf.

Lemma 1 SpellTrieFromLeaves returns all sequences in the
input trie that are not proper prefixes of any other.

Proof By construction of the trie. �
We produce Ms in two steps: (i) we produce a right-

supermaximal set of sequences Mrs by calling SpellTrieFrom-

Leaves on the pruned search space, and (ii) we pass Mrs

to Algorithm 1, whose job is to eliminate proper suffixes
from Mrs to produce Ms . The outline of the proof is as fol-
lows: first we prove that SpellTrieFromLeaves eliminates proper
prefixes from an input set of sequences, then we show that
SpellTrieFromLeaves can be used to eliminate proper suffixes,
after that we show that Algorithm 1, when given a right-
supermaximal set of motifs Mrs , produces the supermaximal
motifs set. We conclude our proof by showing that the input
we give to Algorithm 1 is indeed right-supermaximal.

SpellTrieFromLeaves can be used to remove proper suffixes
from a set of sequences. When sequences are reversed, proper
suffixes become proper prefixes, so it follows from Lemma 1
that SpellTrieFromLeaves can be used to remove proper suffixes
from a set of sequences when it is called on a trie construed
with a set Mrev of reversed sequences, where s ∈ Mrev if
srev ∈ M .

When the input to Algorithm 1 is a right-supermaximal
set of sequences Mrs , its output is a supermaximal set of
sequences Ms . Algorithm 1 removes proper suffixes from
a set of sequences using SpellTrieFromLeaves , and the input
set Mrs does not have sequences that are proper prefixes
or proper subsequences of other sequences (proof in next
paragraph), which means that the output set Ms does not have
sequences that are proper prefixes, proper subsequences, or
proper suffixes of other sequences in Ms , that is, Ms is a
supermaximal set of motifs.

In this paragraph, we show that the input to Algorithm 1
is a right-supermaximal set of sequences. This set is pro-
duced by calling SpellTrieFromLeaves on the pruned search

123

A scalable parallel system 893

space trie that has all the valid motifs. It follows from the
discussion in Sect. 2 that if a sequence is a valid motif, all
its subsequences, including all its proper suffixes, are valid
motifs. We use this together with Lemma 1 to show that
calling SpellTrieFromLeaves produces the right-supermaximal
set of motifs Mrs , i.e., if a motif m is in Mrs , any other
motif in Mrs is neither a proper prefix (follows directly from
Lemma 1) nor a proper subsequence of m. We show next
that if a sequence is in Mrs , it is not a proper subsequence of
any other string in Mrs . Assume m is a valid motif in Mrs ,
and msub is a proper subsequence of m. msub is a proper
prefix of some other sequence that is a proper suffix of m,
and all proper suffixes of m are in the pruned search space
trie, so it follows from Lemma 1 that msub cannot be in
Mrs .

References

1. Apostolico, A., Comin, M., Parida, L.: VARUN: discovering exten-
sible motifs under saturation constraints. IEEE/ACM Trans. Com-
put. Biol. Bioinform. 7(4), 752–762 (2010)

2. Becher, V., Deymonnaz, A., Heiber, P.: Efficient computation of
all perfect repeats in genomic sequences of up to half a gigabyte,
with a case study on the human genome. Bioinformatics 25(14),
1746–53 (2009)

3. Carvalho, A.M., Oliveira, A.L., Freitas, A.T., Sagot, M.F.: A par-
allel algorithm for the extraction of structured motifs. In: Proceed-
ings of the ACM Symposium on Applied Computing (SAC), pp.
147–153 (2004)

4. Challa, S., Thulasiraman, P.: Protein sequence motif discovery
on distributed supercomputer. In: Proceedings of the International
Conference on Advances in Grid and Pervasive Computing (GPC),
pp. 232–243 (2008)

5. Das, M.K., Dai, H.K.: A survey of DNA motif finding algorithms.
BMC Bioinform. 8(S-7), S21 (2007)

6. Dasari, N.S., Desh, R., Zubair, M.: An efficient multicore imple-
mentation of planted motif problem. In: Proceedings of the Inter-
national Conference on High Performance Computing and Simu-
lation (HPCS), pp. 9–15 (2010)

7. Dasari, N.S., Ranjan, D., Zubair, M.: High performance implemen-
tation of planted motif problem using suffix trees. In: Proceedings
of the International Conference on High Performance Computing
and Simulation (HPCS), pp. 200–206 (2011)

8. Federico, M., Pisanti, N.: Suffix tree characterization of maximal
motifs in biological sequences. Theor. Comput. Sci. 410(43), 4391–
4401 (2009)

9. Floratou, A., Tata, S., Patel, J.M.: Efficient and accurate discovery
of patterns in sequence data sets. IEEE Trans. Knowl. Data Eng.
23(8), 1154–1168 (2011)

10. Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E.,
Vandin, F., Salzberg, S., Warnow, T.: MADMX: a novel strategy
for maximal dense motif extraction. In: Proceedings of Workshop
on Algorithms in Bioinformatics, pp. 362–374 (2009)

11. Gusfield, D.: Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge University Press,
Cambridge (1997)

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: Proceedings of the ACM International Conference
on Management of Data (SIGMOD), pp. 1–12 (2000)

13. Huang, E., Yang, L., Chowdhary, R., Kassim, A., Bajic, V.B.: An
algorithm for ab initio dna motif detection. Inf. Process. Living
Syst. 2, 611–614 (2005)

14. Huang, C.W., Lee, W.S., Hsieh, S.Y.: An improved heuristic algo-
rithm for finding motif signals in DNA sequences. IEEE/ACM
Trans. Comput. Biol. Bioinform. 8(4), 959–975 (2011)

15. Kleinrock, L.: Queueing Systems, vol. I: Theory. Wiley, New York
(1975)

16. Liu, Y., Schmidt, B., Maskell, D.L.: An ultrafast scalable many-core
motif discovery algorithm for multiple gpus. In: Proceedings of the
International Symposium on Parallel and Distributed Processing,
pp. 428–434 (2011)

17. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern
mining algorithms. ACM Comput. Surv. 43(1), 1–41 (2010)

18. Mansour, E., Allam, A., Skiadopoulos, S., Kalnis, P.: Era: efficient
serial and parallel suffix tree construction for very long strings.
Proc. VLDB Endow. 5(1), 49–60 (2011)

19. Marchand, B., Bajic, V.B., Kaushik, D.K.: Highly scalable ab ini-
tio genomic motif identification. In: Proceedings of International
Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC), pp. 56:1–56:10 (2011)

20. Marsan, L., Sagot, M.F.: Algorithms for extracting structured
motifs using a suffix tree with an application to promoter and regu-
latory site consensus identification. J. Comput. Biol. 7(3–4), 345–
362 (2000)

21. Meisner, D., Wenisch, T.F.: Stochastic queuing simulation for data
center workloads. In: Exascale Evaluation and Research Tech-
niques Workshop (2010)

22. Mueen, A., Keogh, E.: Online discovery and maintenance of time
series motifs. In: Proceedings of the ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), pp. 1089–
1098 (2010)

23. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Sto-
chastic Processes. McGraw-Hill, New York (2002)

24. Sagot, M.F.: Spelling approximate repeated or common motifs
using a suffix tree. In: Proceedings of 3rd Latin American Sympo-
sium on Theoretical Informatics, pp. 374–390 (1998)

25. Sahli, M., Mansour, E., Kalnis, P.: Parallel motif extraction from
very long sequences. In: Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM)
(2013)

26. Saxena, K., Shukla, R.: Significant interval and frequent pattern
discovery in web log data. Int. J. Comput. Sci. Issues 7(1(3)), 29–
36 (2010)

27. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements
in the cloud: observing, analyzing, and reducing variance. Proc.
VLDB Endow. 3(1–2), 460–471 (2010)

28. Tsirogiannis, D., Koudas, N.: Suffix tree construction algorithms on
modern hardware. In: Proceedings of the International Conference
on Extending Database Technology (EDBT), pp. 263–274 (2010)

29. Ukkonen, E.: On-line construction of suffix trees. Algorithmica
14(3), 249–260 (1995)

30. Xie, X., Mikkelsen, T.S., Gnirke, A., Lindblad-Toh, K., Kellis, M.,
Lander, E.S.: Systematic discovery of regulatory motifs in con-
served regions of the human genome, including thousands of ctcf
insulator sites. Proc. Natl. Acad. Sci. 104(17), 7145–7150 (2007)

31. Yun, U., Ryu, K.H.: Approximate weighted frequent pattern mining
with/without noisy environments. Knowl. Based Syst. 24(1), 73–82
(2011)

123

	ACME: A scalable parallel system for extracting frequent patterns from a very long sequence
	Abstract
	1 Introduction
	2 Background
	2.1 Motifs
	2.2 Trie-based search space and suffix trees

	3 Related work
	4 Supermaximal motifs
	5 Parallel motif extraction (FAST)
	5.1 System architecture
	5.2 Horizontal search space partitioning
	5.3 Prefix length trade-off
	5.4 FAST algorithm

	6 Automatic tuning and elasticity
	6.1 Problem definition
	6.2 Distribution of workload frequency
	6.3 ACME automatic tuning
	6.3.1 Estimating serial execution time
	6.3.2 Estimating parallel execution time

	6.4 ACME elasticity

	7 Cache-optimized motif extraction (CAST)
	7.1 Spatial and temporal memory locality
	7.2 CAST algorithm
	7.2.1 Prefix initialization
	7.2.2 Extension, validation, and pruning

	8 Evaluation
	8.1 Analyzing ACME cloud-oriented features
	8.1.1 Automatic tuning: accuracy and cost
	8.1.2 Elasticity model: deployment on Amazon EC2
	8.1.3 Startup cost and elasticity overhead
	8.1.4 Parallel scalability

	8.2 ACME comprehensive motif extraction support
	8.2.1 Gigabyte-long sequences and varying alphabets
	8.2.2 Comparison against state-of-the-art
	8.2.3 Memory usage

	8.3 Cache efficiency

	9 Conclusion
	Appendix 1: Proof for Algorithm 1
	References

